Publications

What is a Publication?
1701 Publications visible to you, out of a total of 1701

Abstract (Expand)

Abstract The COVID‐19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small‐moleculer efficient small‐molecule drugs that are widely available, including in low‐ and middle‐income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the “Billion molecules against COVID‐19 challenge”, to identify small‐molecule inhibitors against SARS‐CoV‐2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding‐, cleavage‐, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS‐CoV‐2 treatments.

Authors: Johannes Schimunek, Philipp Seidl, Katarina Elez, Tim Hempel, Tuan Le, Frank Noé, Simon Olsson, Lluís Raich, Robin Winter, Hatice Gokcan, Filipp Gusev, Evgeny M. Gutkin, Olexandr Isayev, Maria G. Kurnikova, Chamali H. Narangoda, Roman Zubatyuk, Ivan P. Bosko, Konstantin V. Furs, Anna D. Karpenko, Yury V. Kornoushenko, Mikita Shuldau, Artsemi Yushkevich, Mohammed Benabderrahmane, Patrick Bousquet-Melou, Ronan Bureau, Beatrice Charton, Bertrand Cirou, Gérard Gil, William J. Allen, Suman Sirimulla, Stanley Watowich, Nick Antonopoulos, Nikolaos Epitropakis, Agamemnon Krasoulis, Vassilis Pitsikalis, Stavros Theodorakis, Igor Kozlovskii, Anton Maliutin, Alexander Medvedev, Petr Popov, Mark Zaretckii, Hamid Eghbal-zadeh, Christina Halmich, Sepp Hochreiter, Andreas Mayr, Peter Ruch, Michael Widrich, Francois Berenger, Ashutosh Kumar, Yoshihiro Yamanishi, Kam Zhang, Emmanuel Bengio, Yoshua Bengio, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Marcous Gilles, Enrico Glaab, Kelly Barnsley, Suhasini M. Iyengar, Mary Jo Ondrechen, V. Joachim Haupt, Florian Kaiser, Michael Schroeder, Luisa Pugliese, Simone Albani, Christina Athanasiou, Andrea Beccari, Paolo Carloni, Giulia D'Arrigo, Eleonora Gianquinto, Jonas Goßen, Anton Hanke, Benjamin P. Joseph, Daria B. Kokh, Sandra Kovachka, Candida Manelfi, Goutam Mukherjee, Abraham Muñiz-Chicharro, Francesco Musiani, Ariane Nunes-Alves, Giulia Paiardi, Giulia Rossetti, S. Kashif Sadiq, Francesca Spyrakis, Carmine Talarico, Alexandros Tsengenes, Rebecca Wade, Conner Copeland, Jeremiah Gaiser, Daniel R. Olson, Amitava Roy, Vishwesh Venkatraman, Travis J. Wheeler, Haribabu Arthanari, Klara Blaschitz, Marco Cespugli, Vedat Durmaz, Konstantin Fackeldey, Patrick D. Fischer, Christoph Gorgulla, Christian Gruber, Karl Gruber, Michael Hetmann, Jamie E. Kinney, Krishna M. Padmanabha Das, Shreya Pandita, Amit Singh, Georg Steinkellner, Guilhem Tesseyre, Gerhard Wagner, Zi-Fu Wang, Ryan J. Yust, Dmitry S. Druzhilovskiy, Dmitry Filimonov, Pavel V. Pogodin, Vladimir Poroikov, Anastassia V. Rudik, Leonid A. Stolbov, Alexander V. Veselovsky, Maria De Rosa, Giada De Simone, Maria R. Gulotta, Jessica Lombino, Nedra Mekni, Ugo Perricone, Arturo Casini, Amanda Embree, D. Benjamin Gordon, David Lei, Katelin Pratt, Christopher A. Voigt, Kuang-Yu Chen, Yves Jacob, Tim Krischuns, Pierre Lafaye, Agnès Zettor, M. Luis Rodríguez, Kris M. White, Daren Fearon, Frank von Delft, Martin A. Walsh, Dragos Horvath, Charles L. Brooks, Babak Falsafi, Bryan Ford, Adolfo García-Sastre, Sang Yup Lee, Nadia Naffakh, Alexandre Varnek, Guenter Klambauer, Thomas M. Hermans

Date Published: 2024

Publication Type: Journal

Abstract (Expand)

Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis, which generates forward predictions of models for comparison with observations. The majority of state-of-the-art rapid population synthesis methods are based on analytic fitting formulae to stellar evolution tracks that are computationally cheap to sample statistically over a continuous parameter range. The computational costs of running detailed stellar evolution codes, such as MESA, over wide and densely sampled parameter grids are prohibitive, while stellar-age based interpolation in-between sparsely sampled grid points leads to intolerably large systematic prediction errors. In this work, we provide two solutions for automated interpolation methods that offer satisfactory trade-off points between cost-efficiency and accuracy. We construct a timescale-adapted evolutionary coordinate and use it in a two-step interpolation scheme that traces the evolution of stars from zero age main sequence all the way to the end of core helium burning while covering a mass range from 0.65 to 300 M⊙. The feedforward neural network regression model (first solution) that we train to predict stellar surface variables can make millions of predictions, sufficiently accurate over the entire parameter space, within tens of seconds on a 4-core CPU. The hierarchical nearest-neighbor interpolation algorithm (second solution) that we hard-code to the same end achieves even higher predictive accuracy, the same algorithm remains applicable to all stellar variables evolved over time, but it is two orders of magnitude slower. Our methodological framework is demonstrated to work on the MESA Isochrones and Stellar Tracks (Choi et al. 2016) data set, but is independent of the input stellar catalog. Finally, we discuss the prospective applications of these methods and provide guidelines for generalizing them to higher dimensional parameter spaces.

Authors: K. Maltsev, F. R. N. Schneider, F. K. Röpke, A. I. Jordan, G. A. Qadir, W. E. Kerzendorf, K. Riedmiller, P. van der Smagt

Date Published: 2024

Publication Type: Journal

Abstract (Expand)

Research data management (RDM) is central to the implementation of the FAIR (Findable Accessible, Interoperable, Reusable) and Open Science principles. Recognising the importance of RDM, ELIXIR PlatformsIXIR Platforms and Nodes have invested in RDM and launched various projects and initiatives to ensure good data management practices for scientific excellence. These projects have resulted in a rich set of tools and resources highly valuable for FAIR data management. However, these resources remain scattered across projects and ELIXIR structures, making their dissemination and application challenging. Therefore, it becomes imminent to coordinate these efforts for sustainable and harmonised RDM practices with dedicated forums for RDM professionals to exchange knowledge and share resources. The proposed ELIXIR RDM Community will bring together RDM experts to develop ELIXIR’s vision and coordinate its activities, taking advantage of the available assets. It aims to coordinate RDM best practices and illustrate how to use the existing ELIXIR RDM services. The Community will be built around three integral pillars, namely, a network of RDM professionals, RDM knowledge management and RDM training expertise and resources. It will also engage with external stakeholders to leverage benefits and provide a forum to RDM professionals for regular knowledge exchange, capacity building and development of harmonised RDM practices, keeping in line with the overall scope of the RDM Community. In the short term, the Community aims to build upon the existing resources and ensure that the content of these remain up to date and fit for purpose. In the long run, the Community will aim to strengthen the skills and knowledge of its RDM professionals to support the emerging needs of the scientific community. The Community will also devise an effective strategy to engage with other ELIXIR structures and international stakeholders to influence and align with developments and solutions in the RDM field.

Authors: Flora D'Anna, Niclas Jareborg, Mijke Jetten, Minna Ahokas, Pinar Alper, Robert Andrews, Korbinian Bösl, Teresa D’Altri, Daniel Faria, Nazeefa Fatima, Siiri Fuchs, Clare Garrard, Wei Gu, Katharina F. Heil, Yvonne Kallberg, Flavio Licciulli, Nils-Christian Lübke, Ana M. P. Melo, Ivan Mičetić, Jorge Oliveira, Anastasis Oulas, Patricia M. Palagi, Krzysztof Poterlowicz, Xenia Perez-Sitja, Patrick Ruch, Susanna-Assunta Sansone, Helena Schnitzer, Celia van Gelder, Thanasis Vergoulis, Daniel Wibberg, Ulrike Wittig, Brane Leskošek, Jiri Vondrasek, Munazah Andrabi

Date Published: 2024

Publication Type: Journal

Abstract

Not specified

Authors: Nikos Gianniotis, Kai L. Polsterer, Iliana Isabel Cortés Pérez

Date Published: 2024

Publication Type: InProceedings

Abstract

Not specified

Authors: Sebastian Arnold, Eva-Maria Walz, Johanna Ziegel, Tilmann Gneiting

Date Published: 2024

Publication Type: Journal

Abstract

Not specified

Authors: Kevin Höhlein, Benedikt Schulz, Rüdiger Westermann, Sebastian Lerch

Date Published: 2024

Publication Type: Journal

Abstract

Not specified

Authors: V. A. Bronner, F. R. N. Schneider, Ph. Podsiadlowski, F. K. Röpke

Date Published: 2024

Publication Type: Journal

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH