Publications

What is a Publication?
1579 Publications visible to you, out of a total of 1579

Abstract

Not specified

Authors: Yannick Hoga, Timo Dimitriadis

Date Published: 1st Apr 2023

Publication Type: Journal

Abstract (Expand)

We provide a brief, and inevitably incomplete overview of the use of Machine Learning (ML) and other AI methods in astronomy, astrophysics, and cosmology. Astronomy entered the big data era with the first digital sky surveys in the early 1990s and the resulting Terascale data sets, which required automating of many data processing and analysis tasks, for example the star-galaxy separation, with billions of feature vectors in hundreds of dimensions. The exponential data growth continued, with the rise of synoptic sky surveys and the Time Domain Astronomy, with the resulting Petascale data streams and the need for a real-time processing, classification, and decision making. A broad variety of classification and clustering methods have been applied for these tasks, and this remains a very active area of research. Over the past decade we have seen an exponential growth of the astronomical literature involving a variety of ML/AI applications of an ever increasing complexity and sophistication. ML and AI are now a standard part of the astronomical toolkit. As the data complexity continues to increase, we anticipate further advances leading towards a collaborative human-AI discovery.

Authors: S. G. Djorgovski, Ashish Mahabal, M. J. Graham, Kai L. Polsterer, Alberto Krone-Martins

Date Published: 1st Apr 2023

Publication Type: InCollection

Abstract (Expand)

Context: The Juno mission has provided measurements of Jupiter’s gravity field with an outstanding level of accuracy, leading to better constraints on the interior of the planet. Improving our knowledge of the internal structure of Jupiter is key to understanding its formation and evolution but is also important in the framework of exoplanet exploration. Aims: In this study, we investigated the differences between the state-of-the-art equations of state and their impact on the properties of interior models. Accounting for uncertainty on the hydrogen and helium equation of state, we assessed the span of the interior features of Jupiter. Methods: We carried out an extensive exploration of the parameter space and studied a wide range of interior models using Markov chain Monte Carlo simulations. To consider the uncertainty on the equation of state, we allowed for modifications of the equation of state in our calculations. Results: Our models harbour a dilute core and indicate that Jupiter’s internal entropy is higher than what is usually assumed from the Galileo probe measurements. We obtain solutions with extended dilute cores, but contrary to other recent interior models of Jupiter, we also obtain models with small dilute cores. The dilute cores in such solutions extend to ~20% of Jupiter’s mass, leading to better agreement with formation–evolution models. Conclusions: We conclude that the equations of state used in Jupiter models have a crucial effect on the inferred structure and composition. Further explorations of the behaviour of hydrogen–helium mixtures at the pressure and temperature conditions in Jupiter will help to constrain the interior of the planet, and therefore its origin.

Authors: S. Howard, T. Guillot, M. Bazot, Y. Miguel, D. J. Stevenson, E. Galanti, Y. Kaspi, W. B. Hubbard, B. Militzer, R. Helled, N. Nettelmann, B. Idini, S. Bolton

Date Published: 1st Apr 2023

Publication Type: Journal

Abstract

Not specified

Authors: Javier Morán-Fraile, Fabian R. N. Schneider, Friedrich K. Röpke, Sebastian T. Ohlmann, Rüdiger Pakmor, Theodoros Soultanis, Andreas Bauswein

Date Published: 1st Apr 2023

Publication Type: Journal

Abstract (Expand)

SABIO-RK is a database for biochemical reactions and their kinetics. Data in SABIO-RK are inherently multidimensional and complex. The complex relationships between the data are often difficult to follow or even not represented when using standard tabular views. With an increasing number of data points the mismatch between tables and insights becomes more obvious, and getting an overview of the data becomes harder. Such complex data benefit from being presented using specially adapted visual tools. Visualization is a natural and user-friendly way to quickly get an overview of the data and to detect clusters and outliers. Here, we describe the implementation of a variety of visualization concepts into a common interface within the SABIO-RK biochemical reaction kinetics database. For that purpose, we use a heat map, parallel coordinates and scatter plots to allow the interactive visual exploration of general entry-based information of biochemical reactions and specific kinetic parameter values. Database URL https://sabiork.h-its.org/.

Authors: D. Dudas, U. Wittig, M. Rey, A. Weidemann, W. Muller

Date Published: 31st Mar 2023

Publication Type: Journal

Abstract (Expand)

The present document is the first written presentation of the Virtual Human Twin (VHT) vision as it has been prepared by the EDITH consortium and discussed with select representatives of the wider ecosystem. After a brief statement on the genesis of the vision, the document is composed of two main parts: the outline of the VHT roadmap and the elaboration of the vision for the integrated Virtual Human Twin.

Author: Gerhard Mayer, Martin Golebiewski

Date Published: 31st Mar 2023

Publication Type: Misc

Abstract

Not specified

Authors: Lucas Diedrich, Matthias Brosz, Tobias Abele, Salome Steinke, Frauke Gräter, Kerstin Göpfrich, Camilo Aponte-Santamaría

Date Published: 28th Mar 2023

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH