Publications

What is a Publication?
437 Publications visible to you, out of a total of 437

Abstract (Expand)

Hydrogen atom transfer (HAT) reactions are important in many biological systems. As these reactions are hard to observe experimentally, it is of high interest to shed light on them using simulations. Here, we present a machine learning model based on graph neural networks for the prediction of energy barriers of HAT reactions in proteins. As input, the model uses exclusively non-optimized structures as obtained from classical simulations. It was trained on more than 17 000 energy barriers calculated using hybrid density functional theory. We built and evaluated the model in the context of HAT in collagen, but we show that the same workflow can easily be applied to HAT reactions in other biological or synthetic polymers. We obtain for relevant reactions (small reaction distances) a model with good predictive power (R2 ∼ 0.9 and mean absolute error of <3 kcal mol−1). As the inference speed is high, this model enables evaluations of dozens of chemical situations within seconds. When combined with molecular dynamics in a kinetic Monte-Carlo scheme, the model paves the way toward reactive simulations.

Authors: Kai Riedmiller, Patrick Reiser, Elizaveta Bobkova, Kiril Maltsev, Ganna Gryn’ova, Pascal Friederich, Frauke Gräter

Date Published: 16th Jan 2024

Publication Type: Journal

Abstract (Expand)

Orbital-free density functional theory (OF-DFT) holds promise to compute ground state molecular properties at minimal cost. However, it has been held back by our inability to compute the kinetic energykinetic energy as a functional of electron density alone. Here, we set out to learn the kinetic energy functional from ground truth provided by the more expensive Kohn–Sham density functional theory. Such learning is confronted with two key challenges: Giving the model sufficient expressivity and spatial context while limiting the memory footprint to afford computations on a GPU and creating a sufficiently broad distribution of training data to enable iterative density optimization even when starting from a poor initial guess. In response, we introduce KineticNet, an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids. Important contributions include convolution filters with sufficient spatial resolution in the vicinity of nuclear cusp, an atom-centric sparse but expressive architecture that relays information across multiple bond lengths, and a new strategy to generate varied training data by finding ground state densities in the face of perturbations by a random external potential. KineticNet achieves, for the first time, chemical accuracy of the learned functionals across input densities and geometries of tiny molecules. For two-electron systems, we additionally demonstrate OF-DFT density optimization with chemical accuracy.

Authors: R. Remme, T. Kaczun, M. Scheurer, A. Dreuw, F. A. Hamprecht

Date Published: 14th Oct 2023

Publication Type: Journal

Abstract (Expand)

Redox-active organic molecules, i.e., molecules that can relatively easily accept and/or donate electrons, are ubiquitous in biology, chemical synthesis, and electronic and spintronic devices, such as solar cells and rechargeable batteries, etc. Choosing the best candidates from an essentially infinite chemical space for experimental testing in a target application requires efficient screening approaches. In this Review, we discuss modern in silico techniques for predicting reduction and oxidation potentials of organic molecules that go beyond conventional first-principles computations and thermodynamic cycles. Approaches ranging from simple linear fits based on molecular orbital energy approximation and energy difference approximation to advanced regression and neural network machine learning algorithms employing complex descriptors of molecular compositions, geometries, and electronic structures are examined in conjunction with relevant literature examples. We discuss the interplay between ab initio data and machine learning (ML), i.e., whether it is better to base predictions on low-level quantum-chemical results corrected with ML or to bypass first-principles computations entirely and instead rely on elaborate deep learning architectures. Finally, we list currently available data sets of redox-active organic molecules and their experimental and/or computed properties to facilitate the development of screening platforms and rational design of redox-active organic molecules.

Authors: Rostislav Fedorov, Ganna Gryn’ova

Date Published: 8th Aug 2023

Publication Type: Journal

Abstract (Expand)

Abstract Machine learning plays an increasingly important role in many areas of chemistry and materials science, being used to predict materials properties, accelerate simulations, design new structures,ns, design new structures, and predict synthesis routes of new materials. Graph neural networks (GNNs) are one of the fastest growing classes of machine learning models. They are of particular relevance for chemistry and materials science, as they directly work on a graph or structural representation of molecules and materials and therefore have full access to all relevant information required to characterize materials. In this Review, we provide an overview of the basic principles of GNNs, widely used datasets, and state-of-the-art architectures, followed by a discussion of a wide range of recent applications of GNNs in chemistry and materials science, and concluding with a road-map for the further development and application of GNNs.

Authors: Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, Pascal Friederich

Date Published: 1st Dec 2022

Publication Type: Journal

Abstract (Expand)

Branched Optimal Transport (BOT) is a generalization of optimal transport in which transportation costs along an edge are subadditive. This subadditivity models an increase in transport efficiency when shipping mass along the same route, favoring branched transportation networks. We here study the NP-hard optimization of BOT networks connecting a finite number of sources and sinks in ℝ2. First, we show how to efficiently find the best geometry of a BOT network for many sources and sinks, given a topology. Second, we argue that a topology with more than three edges meeting at a branching point is never optimal. Third, we show that the results obtained for the Euclidean plane generalize directly to optimal transportation networks on two-dimensional Riemannian manifolds. Finally, we present a simple but effective approximate BOT solver combining geometric optimization with a combinatorial optimization of the network topology.

Authors: Peter Lippmann, Enrique Fita Sanmartín, Fred A. Hamprecht

Date Published: 2022

Publication Type: Journal

Abstract (Expand)

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.

Authors: Marek Ostaszewski, Anna Niarakis, Alexander Mazein, Inna Kuperstein, Robert Phair, Aurelio Orta‐Resendiz, Vidisha Singh, Sara Sadat Aghamiri, Marcio Luis Acencio, Enrico Glaab, Andreas Ruepp, Gisela Fobo, Corinna Montrone, Barbara Brauner, Goar Frishman, Luis Cristóbal Monraz Gómez, Julia Somers, Matti Hoch, Shailendra Kumar Gupta, Julia Scheel, Hanna Borlinghaus, Tobias Czauderna, Falk Schreiber, Arnau Montagud, Miguel Ponce de Leon, Akira Funahashi, Yusuke Hiki, Noriko Hiroi, Takahiro G Yamada, Andreas Dräger, Alina Renz, Muhammad Naveez, Zsolt Bocskei, Francesco Messina, Daniela Börnigen, Liam Fergusson, Marta Conti, Marius Rameil, Vanessa Nakonecnij, Jakob Vanhoefer, Leonard Schmiester, Muying Wang, Emily E Ackerman, Jason E Shoemaker, Jeremy Zucker, Kristie Oxford, Jeremy Teuton, Ebru Kocakaya, Gökçe Yağmur Summak, Kristina Hanspers, Martina Kutmon, Susan Coort, Lars Eijssen, Friederike Ehrhart, Devasahayam Arokia Balaya Rex, Denise Slenter, Marvin Martens, Nhung Pham, Robin Haw, Bijay Jassal, Lisa Matthews, Marija Orlic‐Milacic, Andrea Senff Ribeiro, Karen Rothfels, Veronica Shamovsky, Ralf Stephan, Cristoffer Sevilla, Thawfeek Varusai, Jean‐Marie Ravel, Rupsha Fraser, Vera Ortseifen, Silvia Marchesi, Piotr Gawron, Ewa Smula, Laurent Heirendt, Venkata Satagopam, Guanming Wu, Anders Riutta, Martin Golebiewski, Stuart Owen, Carole Goble, Xiaoming Hu, Rupert W Overall, Dieter Maier, Angela Bauch, Benjamin M Gyori, John A Bachman, Carlos Vega, Valentin Grouès, Miguel Vazquez, Pablo Porras, Luana Licata, Marta Iannuccelli, Francesca Sacco, Anastasia Nesterova, Anton Yuryev, Anita de Waard, Denes Turei, Augustin Luna, Ozgun Babur, Sylvain Soliman, Alberto Valdeolivas, Marina Esteban‐Medina, Maria Peña‐Chilet, Kinza Rian, Tomáš Helikar, Bhanwar Lal Puniya, Dezso Modos, Agatha Treveil, Marton Olbei, Bertrand De Meulder, Stephane Ballereau, Aurélien Dugourd, Aurélien Naldi, Vincent Noël, Laurence Calzone, Chris Sander, Emek Demir, Tamas Korcsmaros, Tom C Freeman, Franck Augé, Jacques S Beckmann, Jan Hasenauer, Olaf Wolkenhauer, Egon L Wilighagen, Alexander R Pico, Chris T Evelo, Marc E Gillespie, Lincoln D Stein, Henning Hermjakob, Peter D'Eustachio, Julio Saez‐Rodriguez, Joaquin Dopazo, Alfonso Valencia, Hiroaki Kitano, Emmanuel Barillot, Charles Auffray, Rudi Balling, Reinhard Schneider

Date Published: 1st Oct 2021

Publication Type: Journal

Abstract (Expand)

Single-molecule force spectroscopy and classical molecular dynamics are natural allies. Recent advances in both experiments and simulations have increasingly facilitated a direct comparison of SMFS and MD data, most importantly by closing the gap between time scales, which has been traditionally at least 5 orders of magnitudes wide. In this review, we will explore these advances chiefly on the computational side. We focus on protein dynamics under force and highlight recent studies that showcase how lower loading rates and more statistics help to better interpret previous experiments and to also motivate new ones. At the same time, steadily increasing system sizes are used to mimic more closely the mechanical environment in the biological context. We showcase some of these advances on atomistic and coarse-grained scale, from asymmetric membrane tension to larger (multidomain/multimeric) protein assemblies under force.

Authors: Florian Franz, Csaba Daday, Frauke Gräter

Date Published: 1st Apr 2020

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH