Publications

What is a Publication?
91 Publications visible to you, out of a total of 91

Abstract (Expand)

The four-point-one ezrin-radixin-moesin homology (FERM) protein domain is a multifunctional protein-lipid binding site, constituting an integral part of numerous membrane-associated proteins. Its interaction with the lipid phosphatidylinositol-4,5-bisphosphate (PIP2), located at the inner leaflet of eukaryotic plasma membranes, is important for localization, anchorage, and activation of FERM-containing proteins. FERM-PIP2 complexes structurally determined so far exclusively feature a 1:1 binding stoichiometry of protein and lipid, with a few basic FERM residues neutralizing the −4 charge of the bound PIP2. Whether this picture from static crystal structures also applies to the dynamic interaction of FERM domains on PIP2 membranes is unknown. We here quantified the stoichiometry of FERM-PIP2 binding in a lipid bilayer using atomistic molecular dynamics simulations and experiments on solid supported membranes for the FERM domains of focal adhesion kinase and ezrin. In contrast to the structural data, we find much higher average stoichiometries of FERM-PIP2 binding, amounting to 1:3 or 1:4 ratios, respectively. In simulations, the full set of basic residues at the membrane interface, 7 and 15 residues for focal adhesion kinase and ezrin, respectively, engages in PIP2 interactions. In addition, Na ions enter the FERM-membrane binding interface, compensating negative PIP2 charges in case of high charge surpluses from bound PIP2. We propose the multivalent binding of FERM domains to PIP2 in lipid bilayers to significantly enhance the stability of FERM-membrane binding and to render the FERM-membrane linkage highly adjustable.

Authors: Thomas Ehret, Tim Heißenberg, Svenja de Buhr, Camilo Aponte-Santamaría, Claudia Steinem, Frauke Gräter

Date Published: 21st Feb 2023

Publication Type: Journal

Abstract (Expand)

Focal adhesions (FAs) mediate the interaction of the cytoskeleton with the extracellular matrix in a highly dynamic fashion. Talin is a central regulator, adaptor protein, and mechano-sensor of FA complexes. For recruitment and firm attachment at FAs, talin’s N-terminal FERM domain binds to phosphatidylinositol 4,5-bisphosphate (PIP2)-enriched membranes. A newly published autoinhibitory structure of talin-1, where the known PIP2 interaction sites are covered up, lead us to hypothesize that a hitherto less examined loop insertion of the FERM domain acts as an additional and initial site of contact. We evaluated direct interactions of talin-1 with a PIP2 membrane by means of atomistic molecular dynamics simulations. We show that this unstructured, 33-residue-long loop strongly interacts with PIP2 and can facilitate further membrane contacts, including the canonical PIP2 interactions, by serving as a flexible membrane anchor. Under force as present at FAs, the extensible FERM loop ensures talin maintains membrane contacts when pulled away from the membrane by up to 7 nm. We identify key basic residues of the anchor mediating the highly dynamic talin-membrane interaction. Our results put forward an intrinsically disordered loop as a key and highly adaptable PIP2 recognition site of talin and potentially other PIP2-binding mechano-proteins.

Authors: Jannik Buhr, Florian Franz, Frauke Gräter

Date Published: 21st Feb 2023

Publication Type: Journal

Abstract (Expand)

Knowledge of reliable X−H bond dissociation energies (X = C, N, O, S) for amino acids in proteins is key for studying the radical chemistry of proteins. X−H bond dissociation energies of model dipeptides were computed using the isodesmic reaction method at the BMK/6-31+G(2df,p) and G4(MP2)-6X levels of theory. The density functional theory values agree well with the composite- level calculations. By this high level of theory, combined with a careful choice of reference compounds and peptide model systems, our work provides a highly valuable data set of bond dissociation energies with unprecedented accuracy and comprehensiveness. It will likely prove useful to predict protein biochemistry involving radicals, e.g., by machine learning.

Authors: Authors Wojtek Treyde, Kai Riedmiller, Frauke Gräter

Date Published: 1st Dec 2022

Publication Type: Journal

Abstract (Expand)

Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF’s hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.

Authors: Po-Chia Chen, Fabian Kutzki, Angelika Mojzisch, Bernd Simon, Emma-Ruoqi Xu, Camilo Aponte-Santamaría, Kai Horny, Cy Jeffries, Reinhard Schneppenheim, Matthias Wilmanns, Maria A. Brehm, Frauke Gräter, Janosch Hennig

Date Published: 18th Nov 2022

Publication Type: Journal

Abstract (Expand)

erroptosis is a type of cell death caused by radical-driven lipid peroxidation, leading to membrane damage and rupture. Here we show that enzymatically produced sulfane sulfur (S0) species, specifically hydropersulfides, scavenge endogenously generated free radicals and, thereby, suppress lipid peroxidation and ferroptosis. By providing sulfur for S0 biosynthesis, cysteine can support ferroptosis resistance independently of the canonical GPX4 pathway. Our results further suggest that hydropersulfides terminate radical chain reactions through the formation and self-recombination of perthiyl radicals. The autocatalytic regeneration of hydropersulfides may explain why low micromolar concentrations of persulfides suffice to produce potent cytoprotective effects on a background of millimolar concentrations of glutathione. We propose that increased S0 biosynthesis is an adaptive cellular response to radical-driven lipid peroxidation, potentially representing a primordial radical protection system.

Authors: Uladzimir Barayeu, Danny Schilling, Mohammad Eid, Thamara Nishida Xavier da Silva, Lisa Schlicker, Nikolina Mitreska, Christopher Zapp, Frauke Gräter, Aubry K. Miller, Reinhard Kappl, Almut Schulze, José Pedro Friedmann Angeli, Tobias P. Dick

Date Published: 15th Sep 2022

Publication Type: Journal

Abstract (Expand)

Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the (trans-)Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D’D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose two buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we are able to quantify the kinetics of the transition and the stability of the interface. We find a pronounced destabilization of the interface upon lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D’D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII (FVIII), providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D’D3 domain in VWF biosynthesis and function and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.

Authors: Sophia Gruber, Achim Löf, Adina Hausch, Fabian Kutzki, Res Jöhr, Tobias Obser, Gesa König, Reinhard Schneppenheim, Camilo Aponte-Santamaría, Frauke Gräter, Maria A. Brehm, Martin Benoit, Jan Lipfert

Date Published: 2nd Jun 2022

Publication Type: Journal

Abstract (Expand)

Poly(<i>para</i>-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force.

Authors: Matthias Brosz, Nicholas Michelarakis, Uwe H F Bunz, Camilo Aponte-Santamaría, Frauke Gräter

Date Published: 4th May 2022

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH