Publications

What is a Publication?
1687 Publications visible to you, out of a total of 1687

Abstract

Not specified

Authors: Alexander Holas, Catherine Y. Koch, Joachim Leibold, Alesia Prendi, Tim P. Schlachta, Anna Sophia Schmid, Leonard Schmitt

Date Published: 22nd Jun 2022

Publication Type: Journal

Abstract

Not specified

Authors: Julia Haag, Dimitri Höhler, Ben Bettisworth, Alexandros Stamatakis

Date Published: 21st Jun 2022

Publication Type: Journal

Abstract (Expand)

Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the (trans-)Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D’D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose two buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we are able to quantify the kinetics of the transition and the stability of the interface. We find a pronounced destabilization of the interface upon lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D’D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII (FVIII), providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D’D3 domain in VWF biosynthesis and function and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.

Authors: Sophia Gruber, Achim Löf, Adina Hausch, Fabian Kutzki, Res Jöhr, Tobias Obser, Gesa König, Reinhard Schneppenheim, Camilo Aponte-Santamaría, Frauke Gräter, Maria A. Brehm, Martin Benoit, Jan Lipfert

Date Published: 2nd Jun 2022

Publication Type: Journal

Abstract

Not specified

Authors: Sebastian Bayer, Timo Dimitriadis

Date Published: 1st Jun 2022

Publication Type: Journal

Abstract

Not specified

Authors: Tilmann Gneiting, Peter Vogel

Date Published: 1st Jun 2022

Publication Type: Journal

Abstract

Not specified

Authors: Luke J Shingles, Andreas Flörs, Stuart A Sim, Christine E Collins, Friedrich K Röpke, Ivo R Seitenzahl, Ken J Shen

Date Published: 1st Jun 2022

Publication Type: Journal

Abstract (Expand)

Context: While Jupiter’s massive gas envelope consists mainly of hydrogen and helium, the key to understanding Jupiter’s formation and evolution lies in the distribution of the remaining (heavy) elements. Before the Juno mission, the lack of high-precision gravity harmonics precluded the use of statistical analyses in a robust determination of the heavy-element distribution in Jupiter’s envelope. Aims: In this paper, we assemble the most comprehensive and diverse collection of Jupiter interior models to date and use it to study the distribution of heavy elements in the planet’s envelope. Methods: We apply a Bayesian statistical approach to our interior model calculations, reproducing the Juno gravitational and atmospheric measurements and constraints from the deep zonal flows. Results: Our results show that the gravity constraints lead to a deep entropy of Jupiter corresponding to a 1 bar temperature that is 515 K higher than traditionally assumed. We also find that uncertainties in the equation of state are crucial when determining the amount of heavy elements in Jupiter’s interior. Our models put an upper limit to the inner compact core of Jupiter of 7 M_Earth, independently of the structure model (with or without a dilute core) and the equation of state considered. Furthermore, we robustly demonstrate that Jupiter’s envelope is inhomogeneous, with a heavy-element enrichment in the interior relative to the outer envelope. This implies that heavy-element enrichment continued through the gas accretion phase, with important implications for the formation of giant planets in our Solar System and beyond.

Authors: Y. Miguel, M. Bazot, T. Guillot, S. Howard, E. Galanti, Y. Kaspi, W. B. Hubbard, B. Militzer, R. Helled, S. K. Atreya, J. E. P. Connerney, D. Durante, L. Kulowski, J. I. Lunine, D. Stevenson, S. Bolton

Date Published: 1st Jun 2022

Publication Type: Journal

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH