The Evolution of Multiple Active Site Configurations in a Designed Enzyme

Abstract:

Developments in computational chemistry, bioinformatics, and laboratory evolution have facilitated the de novo design and catalytic optimization of enzymes. Besides creating useful catalysts, the generation and iterative improvement of designed enzymes can provide valuable insight into the interplay between the many phenomena that have been suggested to contribute to catalysis. In this work, we follow changes in conformational sampling, electrostatic preorganization, and quantum tunneling along the evolutionary trajectory of a designed Kemp eliminase. We observe that in the Kemp Eliminase KE07, instability of the designed active site leads to the emergence of two additional active site configurations. Evolutionary conformational selection then gradually stabilizes the most efficient configuration, leading to an improved enzyme. This work exemplifies the link between conformational plasticity and evolvability and demonstrates that residues remote from the active sites of enzymes play crucial roles in controlling and shaping the active site for efficient catalysis.

SEEK ID: https://publications.h-its.org/publications/497

DOI: 10.1038/s41467-018-06305-y

Research Groups: Computational Carbon Chemistry

Publication type: Journal

Journal: Nature Communications

Citation: Nat Commun 9(1)

Date Published: 1st Dec 2018

Registered Mode: by DOI

Authors: Nan-Sook Hong, Dušan Petrović, Richmond Lee, Ganna Gryn’ova, Miha Purg, Jake Saunders, Paul Bauer, Paul D. Carr, Ching-Yeh Lin, Peter D. Mabbitt, William Zhang, Timothy Altamore, Chris Easton, Michelle L. Coote, Shina C. L. Kamerlin, Colin J. Jackson

help Submitter
Citation
Hong, N.-S., Petrović, D., Lee, R., Gryn’ova, G., Purg, M., Saunders, J., Bauer, P., Carr, P. D., Lin, C.-Y., Mabbitt, P. D., Zhang, W., Altamore, T., Easton, C., Coote, M. L., Kamerlin, S. C. L., & Jackson, C. J. (2018). The evolution of multiple active site configurations in a designed enzyme. In Nature Communications (Vol. 9, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41467-018-06305-y
Activity

Views: 5873

Created: 5th Nov 2019 at 13:40

Last updated: 5th Mar 2024 at 21:23

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH