Massively-parallel best subset selection for ordinary least-squares regression

Abstract:
No abstract specified

SEEK ID: https://publications.h-its.org/publications/207

DOI: 10.1109/SSCI.2017.8285225

Research Groups: Astroinformatics

Publication type: InProceedings

Journal: 2017 IEEE Symposium Series on Computational Intelligence (SSCI)

Book Title: 2017 IEEE Symposium Series on Computational Intelligence (SSCI)

Citation: 2017 IEEE Symposium Series on Computational Intelligence (SSCI),pp.1-8,IEEE

Date Published: 1st Nov 2017

Registered Mode: imported from a bibtex file

Authors: Fabian Gieseke, Kai Lars Polsterer, Ashish Mahabal, Christian Igel, Tom Heskes

Citation
Gieseke, F., Polsterer, K. L., Mahabal, A., Igel, C., & Heskes, T. (2017). Massively-parallel best subset selection for ordinary least-squares regression. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE. https://doi.org/10.1109/ssci.2017.8285225
Activity

Views: 5938

Created: 7th Sep 2019 at 10:22

Last updated: 5th Mar 2024 at 21:23

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH