Prediction of diagnosis and diastolic filling pressure by AI-enhanced cardiac MRI: a modelling study of hospital data

Abstract:
No abstract specified

SEEK ID: https://publications.h-its.org/publications/1989

DOI: 10.1016/S2589-7500(24)00063-3

Research Groups: Data Mining and Uncertainty Quantification

Publication type: Journal

Journal: The Lancet Digital Health

Citation: The Lancet Digital Health 6(6):e407-e417

Date Published: 1st Jun 2024

URL:

Registered Mode: by DOI

Authors: David Hermann Lehmann, Bruna Gomes, Niklas Vetter, Olivia Braun, Ali Amr, Thomas Hilbel, Jens Müller, Ulrich Köthe, Christoph Reich, Elham Kayvanpour, Farbod Sedaghat-Hamedani, Manuela Meder, Jan Haas, Euan Ashley, Wolfgang Rottbauer, Dominik Felbel, Raffi Bekeredjian, Heiko Mahrholdt, Andreas Keller, Peter Ong, Andreas Seitz, Hauke Hund, Nicolas Geis, Florian André, Sandy Engelhardt, Hugo A Katus, Norbert Frey, Vincent Heuveline, Benjamin Meder

help Submitter
Citation
Lehmann, D. H., Gomes, B., Vetter, N., Braun, O., Amr, A., Hilbel, T., Müller, J., Köthe, U., Reich, C., Kayvanpour, E., Sedaghat-Hamedani, F., Meder, M., Haas, J., Ashley, E., Rottbauer, W., Felbel, D., Bekeredjian, R., Mahrholdt, H., Keller, A., … Meder, B. (2024). Prediction of diagnosis and diastolic filling pressure by AI-enhanced cardiac MRI: a modelling study of hospital data. In The Lancet Digital Health (Vol. 6, Issue 6, pp. e407–e417). Elsevier BV. https://doi.org/10.1016/s2589-7500(24)00063-3
Activity

Views: 240

Created: 30th Jan 2025 at 12:28

Last updated: 30th Jan 2025 at 12:29

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH