Publications

What is a Publication?
107 Publications visible to you, out of a total of 107

Abstract (Expand)

EnzymeML is an XML-based data exchange format that supports the comprehensive documentation of enzymatic data by describing reaction conditions, time courses of substrate and product concentrations, the kinetic model, and the estimated kinetic constants. EnzymeML is based on the Systems Biology Markup Language, which was extended by implementing the STRENDA Guidelines. An EnzymeML document serves as a container to transfer data between experimental platforms, modeling tools, and databases. EnzymeML supports the scientific community by introducing a standardized data exchange format to make enzymatic data findable, accessible, interoperable, and reusable according to the FAIR data principles. An application programming interface in Python supports the integration of software tools for data acquisition, data analysis, and publication. The feasibility of a seamless data flow using EnzymeML is demonstrated by creating an EnzymeML document from a structured spreadsheet or from a STRENDA DB database entry, by kinetic modeling using the modeling platform COPASI, and by uploading to the enzymatic reaction kinetics database SABIO-RK.

Authors: J. Range, C. Halupczok, J. Lohmann, N. Swainston, C. Kettner, F. T. Bergmann, A. Weidemann, U. Wittig, S. Schnell, J. Pleiss

Date Published: 11th Dec 2021

Publication Type: Journal

Abstract (Expand)

Background: Quantitative data reports are widely produced to inform health policy decisions. Policymakers are expected to critically assess provided information in order to incorporate the best available evidence into the decision-making process. Many other factors are known to influence this process, but little is known about how quantitative data reports are actually read. We explored the reading behavior of (future) health policy decision-makers, using innovative methods. Methods: We conducted a computer-assisted laboratory study, involving starting and advanced students in medicine and health sciences, and professionals as participants. They read a quantitative data report to inform a decision on the use of resources for long-term care in dementia in a hypothetical decision scenario. Data were collected through eye-tracking, questionnaires, and a brief interview. Eye-tracking data were used to generate ‘heatmaps’ and five measures of reading behavior. The questionnaires provided participants’ perceptions of understandability and helpfulness as well as individual characteristics. Interviews documented reasons for attention to specific report sections. The quantitative analysis was largely descriptive, complemented by Pearson correlations. Interviews were analyzed by qualitative content analysis. Results: In total, 46 individuals participated [students (85%), professionals (15%)]. Eye-tracking observations showed that the participants spent equal time and attention for most parts of the presented report, but were less focused when reading the methods section. The qualitative content analysis identified 29 reasons for attention to a report section related to four topics. Eye-tracking measures were largely unrelated to participants’ perceptions of understandability and helpfulness of the report. Conclusions: Eye-tracking data added information on reading behaviors that were not captured by questionnaires or interviews with health decision-makers.

Authors: Pamela Wronski, Michel Wensing, Sucheta Ghosh, Lukas Gärttner, Wolfgang Müller, Jan Koetsenruijter

Date Published: 1st Dec 2021

Publication Type: Journal

Abstract (Expand)

Science continues to become more interdisciplinary and to involve increasingly complex data sets. Many projects in the biomedical and health-related sciences follow or aim to follow the principles ofrinciples of FAIR data sharing, which has been demonstrated to foster collaboration, to lead to better research outcomes, and to help ensure reproducibility of results. Data generated in the course of biomedical and health research present specific challenges for FAIR sharing in the sense that they are heterogeneous and highly sensitive to context and the needs of protection and privacy. Data sharing must respect these features without impeding timely dissemination of results, so that they can contribute to time-critical advances in medical therapy and treatment. Modeling and simulation of biomedical processes have become established tools, and a global community has been developing algorithms, methodologies, and standards for applying biomedical simulation models in clinical research. However, it can be difficult for clinician scientists to follow the specific rules and recommendations for FAIR data sharing within this domain. We seek to clarify the standard workflow for sharing experimental and clinical data with the simulation modeling community. By following these recommendations, data sharing will be improved, collaborations will become more effective, and the FAIR publication and subsequent reuse of data will become possible at the level of quality necessary to support biomedical and health-related sciences.

Authors: Matthias König, Jan Grzegorzewski, Martin Golebiewski, Henning Hermjakob, Mike Hucka, Brett Olivier, Sarah Keating, David Nickerson, Falk Schreiber, Rahuman Sheriff, Dagmar Waltemath

Date Published: 19th Nov 2021

Publication Type: Journal

Abstract (Expand)

The German Central Health Study Hub COVID-19 is an online service that offers bundled access to COVID-19 related studies conducted in Germany. It combines metadata and other information of epidemiologic, public health and clinical studies into a single data repository for FAIR data access. In addition to study characteristics the system also allows easy access to study documents, as well as instruments for data collection. Study metadata and survey instruments are decomposed into individual data items and semantically enriched to ease the findability. Data from existing clinical trial registries (DRKS, clinicaltrails.gov and WHO ICTRP) are merged with epidemiological and public health studies manually collected and entered. More than 850 studies are listed as of September 2021.

Authors: J. Darms, J. Henke, X. Hu, C. O. Schmidt, M. Golebiewski, J. Fluck

Date Published: 18th Nov 2021

Publication Type: Journal

Abstract (Expand)

Chemical named entity recognition (NER) is a significant step for many downstream applications like entity linking for the chemical text-mining pipeline. However, the identification of chemical entities in a biomedical text is a challenging task due to the diverse morphology of chemical entities and the different types of chemical nomenclature. In this work, we describe our approach that was submitted for BioCreative version 7 challenge Track 2, focusing on the ‘Chemical Identification’ task for identifying chemical entities and entity linking, using MeSH. For this purpose, we have applied a two-stage approach as follows (a) usage of fine-tuned BioBERT for identification of chemical entities (b) semantic approximate search in MeSH and PubChem databases for entity linking. There was some friction between the two approaches, as our rule-based approach did not harmonise optimally with partially recognized words forwarded by the BERT component. For our future work, we aim to resolve the issue of the artefacts arising from BERT tokenizers and develop joint learning of chemical named entity recognition and entity linking using pre-trained transformer-based models and compare their performance with our preliminary approach. Next, we will improve the efficiency of our approximate search in reference databases during entity linking. This task is non-trivial as it entails determining similarity scores of large sets of trees with respect to a query tree. Ideally, this will enable flexible parametrization and rule selection for the entity linking search.

Authors: Ghadeer Mobasher, Lukrécia Mertová, Sucheta Ghosh, Olga Krebs, Bettina Heinlein, Wolfgang Müller

Date Published: 11th Nov 2021

Publication Type: Proceedings

Abstract (Expand)

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards.

Authors: F. Schreiber, P. Gleeson, M. Golebiewski, T. E. Gorochowski, M. Hucka, S. M. Keating, M. Konig, C. J. Myers, D. P. Nickerson, B. Sommer, D. Waltemath

Date Published: 22nd Oct 2021

Publication Type: Journal

Abstract (Expand)

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.

Authors: Marek Ostaszewski, Anna Niarakis, Alexander Mazein, Inna Kuperstein, Robert Phair, Aurelio Orta‐Resendiz, Vidisha Singh, Sara Sadat Aghamiri, Marcio Luis Acencio, Enrico Glaab, Andreas Ruepp, Gisela Fobo, Corinna Montrone, Barbara Brauner, Goar Frishman, Luis Cristóbal Monraz Gómez, Julia Somers, Matti Hoch, Shailendra Kumar Gupta, Julia Scheel, Hanna Borlinghaus, Tobias Czauderna, Falk Schreiber, Arnau Montagud, Miguel Ponce de Leon, Akira Funahashi, Yusuke Hiki, Noriko Hiroi, Takahiro G Yamada, Andreas Dräger, Alina Renz, Muhammad Naveez, Zsolt Bocskei, Francesco Messina, Daniela Börnigen, Liam Fergusson, Marta Conti, Marius Rameil, Vanessa Nakonecnij, Jakob Vanhoefer, Leonard Schmiester, Muying Wang, Emily E Ackerman, Jason E Shoemaker, Jeremy Zucker, Kristie Oxford, Jeremy Teuton, Ebru Kocakaya, Gökçe Yağmur Summak, Kristina Hanspers, Martina Kutmon, Susan Coort, Lars Eijssen, Friederike Ehrhart, Devasahayam Arokia Balaya Rex, Denise Slenter, Marvin Martens, Nhung Pham, Robin Haw, Bijay Jassal, Lisa Matthews, Marija Orlic‐Milacic, Andrea Senff Ribeiro, Karen Rothfels, Veronica Shamovsky, Ralf Stephan, Cristoffer Sevilla, Thawfeek Varusai, Jean‐Marie Ravel, Rupsha Fraser, Vera Ortseifen, Silvia Marchesi, Piotr Gawron, Ewa Smula, Laurent Heirendt, Venkata Satagopam, Guanming Wu, Anders Riutta, Martin Golebiewski, Stuart Owen, Carole Goble, Xiaoming Hu, Rupert W Overall, Dieter Maier, Angela Bauch, Benjamin M Gyori, John A Bachman, Carlos Vega, Valentin Grouès, Miguel Vazquez, Pablo Porras, Luana Licata, Marta Iannuccelli, Francesca Sacco, Anastasia Nesterova, Anton Yuryev, Anita de Waard, Denes Turei, Augustin Luna, Ozgun Babur, Sylvain Soliman, Alberto Valdeolivas, Marina Esteban‐Medina, Maria Peña‐Chilet, Kinza Rian, Tomáš Helikar, Bhanwar Lal Puniya, Dezso Modos, Agatha Treveil, Marton Olbei, Bertrand De Meulder, Stephane Ballereau, Aurélien Dugourd, Aurélien Naldi, Vincent Noël, Laurence Calzone, Chris Sander, Emek Demir, Tamas Korcsmaros, Tom C Freeman, Franck Augé, Jacques S Beckmann, Jan Hasenauer, Olaf Wolkenhauer, Egon L Wilighagen, Alexander R Pico, Chris T Evelo, Marc E Gillespie, Lincoln D Stein, Henning Hermjakob, Peter D'Eustachio, Julio Saez‐Rodriguez, Joaquin Dopazo, Alfonso Valencia, Hiroaki Kitano, Emmanuel Barillot, Charles Auffray, Rudi Balling, Reinhard Schneider

Date Published: 1st Oct 2021

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH