Publications

What is a Publication?
7 Publications matching the given criteria: (Clear all filters)
Author: Benoit Morel7

Abstract

Not specified

Authors: Sarah Lutteropp, Céline Scornavacca, Alexey M. Kozlov, Benoit Morel, Alexandros Stamatakis

Date Published: 31st Aug 2021

Publication Type: Journal

Abstract

Not specified

Authors: Benoit Morel, Paul Schade, Sarah Lutteropp, Tom A. Williams, Gergely J. Szöllősi, Alexandros Stamatakis

Date Published: 29th Mar 2021

Publication Type: Journal

Abstract

Not specified

Authors: Benoit Morel, Pierre Barbera, Lucas Czech, Ben Bettisworth, Lukas Hübner, Sarah Lutteropp, Dora Serdari, Evangelia-Georgia Kostaki, Ioannis Mamais, Alexey M Kozlov, Pavlos Pavlidis, Dimitrios Paraskevis, Alexandros Stamatakis

Date Published: 15th Dec 2020

Publication Type: Journal

Abstract (Expand)

Motivation Gene and species tree reconciliation methods can be used to root gene trees and correct uncertainties that are due to scarcity of signal in multiple sequence alignments. So far, reconciliation tools have not been integrated in standard phylogenetic software and they either lack of performance on certain functions, or usability for biologists. Results We present Treerecs, a phylogenetic software based on duplication-loss reconciliation. Treerecs is simple to install and to use, fast, versatile, with a graphic output, and can be used along with methods for phylogenetic inference on multiple alignments like PLL and Seaview. Availability Treerecs is open-source. Its source code (C++, AGPLv3) and manuals are available from https://project.inria.fr/treerecs/

Authors: Nicolas Comte, Benoit Morel, Damir Hasic, Laurent Guéguen, Bastien Boussau, Vincent Daubin, Simon Penel, Celine Scornavacca, Manolo Gouy, Alexandros Stamatakis, Eric Tannier, David P. Parsons

Date Published: 11th Oct 2019

Publication Type: Journal

Abstract (Expand)

Inferring gene trees is difficult because alignments are often too short, and thus contain insufficient signal, while substitution models inevitably fail to capture the complexity of the evolutionary processes. To overcome these challenges species tree-aware methods seek to use information from a putative species tree. However, there are few methods available that implement a full likelihood framework or account for horizontal gene transfers. Furthermore, these methods often require expensive data pre-processing (e.g., computing bootstrap trees), and rely on approximations and heuristics that limit the exploration of tree space. Here we present GeneRax, the first maximum likelihood species tree-aware gene tree inference software. It simultaneously accounts for substitutions at the sequence level and gene level events, such as duplication, transfer and loss and uses established maximum likelihood optimization algorithms. GeneRax can infer rooted gene trees for an arbitrary number of gene families, directly from the per-gene sequence alignments and a rooted, but undated, species tree. We show that compared to competing tools, on simulated data GeneRax infers trees that are the closest to the true tree in 90% of the simulations in terms relative Robinson-Foulds distance. While, on empirical datasets, GeneRax is the fastest among all tested methods when starting from aligned sequences, and that it infers trees with the highest likelihood score, based on our model. GeneRax completed tree inferences and reconciliations for 1099 Cyanobacteria families in eight minutes on 512 CPU cores. Thus, its advanced parallelization scheme enables large-scale analyses. GeneRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax.

Authors: Benoit Morel, Alexey M. Kozlov, Alexandros Stamatakis, Gergely J. Szöllősi

Date Published: 26th Sep 2019

Publication Type: Journal

Abstract (Expand)

ModelTest-NG is a reimplementation from scratch of jModelTest and ProtTest, two popular tools for selecting the best-fit nucleotide and amino acid substitution models, respectively. ModelTest-NG is one to two orders of magnitude faster than jModelTest and ProtTest but equally accurate and introduces several new features, such as ascertainment bias correction, mixture, and free-rate models, or the automatic processing of single partitions. ModelTest-NG is available under a GNU GPL3 license at https://github.com/ddarriba/modeltest , last accessed September 2, 2019.

Authors: Diego Darriba, David Posada, Alexey M Kozlov, Alexandros Stamatakis, Benoit Morel, Tomas Flouri

Date Published: 21st Aug 2019

Publication Type: Journal

Abstract (Expand)

Phylogenetics, the study of evolutionary relationships among biological entities, plays an essential role in biological and medical research. Its applications range from answering fundamental questions, such as understanding the origin of life, to solving more practical problems, such as tracking pandemics in real time. Nowadays, phylogenetic trees are typically inferred from molecular data, via likelihood-based methods. Those methods strive to find the tree that maximizes a likelihood score under a given stochastic model of sequence evolution. This work focuses on the inference of species as well as gene phylogenetic trees. Species evolve through speciation and extinction events. Genes evolve through events such as gene duplication, gene loss, and horizontal gene transfer. Both processes are strongly correlated, because genes belong to species and evolve within their genomes. One can deploy models of gene evolution and to exploit this correlation between species and gene evolutionary histories, in order to improve the accuracy of phylogenetic tree inference methods. However, the most widely used phylogenetic tree inference methods disregard these phenomena and focus on models of sequence evolution only. In addition, current maximum likelihood methods are computationally expensive. This is particularly challenging as the community faces a dramatically growing amount of available molecular data, due to recent advances in sequencing technologies. To handle this data avalanche, we urgently need tools that offer faster algorithms, as well as efficient parallel implementations. In this thesis, I develop new maximum likelihood methods, that explicitly model the relationships between species and gene histories, in order to infer more accurate phylogenetic trees. Those methods employ both, new heuristics, and dedicated parallelization schemes, in order to accelerate the inference process. My first project, ParGenes, is a parallel software pipeline for inferring gene family trees from a set of per-gene multiple sequence alignments. For each input alignment, it determines the best-fit model of sequence evolution, and subsequently searches for the gene family tree with the highest likelihood under this model. To this end, ParGenes uses several state-of-the-art tools, and runs them in parallel using a novel scheduling strategy. My second project, SpeciesRax, is a method for inferring a rooted species tree from a set of unrooted gene family trees. SpeciesRax strives to find the rooted species tree that maximizes the likelihood score under a dedicated model of gene evolution, that accounts for gene duplication, gene loss, and horizontal gene transfer. In addition, I introduce a new method for assessing the confidence in the resulting species tree, as well as a novel method for estimating its branch lengths. My third project, GeneRax, is a novel maximum likelihood method for gene family tree inference. GeneRax takes as input a rooted species tree as well as a set of (per-gene) multiple sequence alignments, and outputs one gene family tree per input alignment. To this end, I introduce the so-called joint likelihood function, which combines both, a model of sequence evolution, and a model of gene evolution. In addition, GeneRax can estimate the pattern of gene duplication, gene loss, and horizontal gene transfer events that occured along the input species tree.

Author: Benoit Morel

Date Published: No date defined

Publication Type: Doctoral Thesis

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH