Publications

What is a Publication?
188 Publications visible to you, out of a total of 188

Abstract

Not specified

Authors: Georgios Lioutas, Andreas Bauswein, Theodoros Soultanis, Rüdiger Pakmor, Volker Springel, Friedrich K. Röpke

Date Published: 1st Feb 2024

Publication Type: Journal

Abstract (Expand)

The merger of a white dwarf (WD) and a neutron star (NS) is a relatively common event that will produce an observable electromagnetic signal. Furthermore, the compactness of these stellar objects makes them an interesting candidate for gravitational wave (GW) astronomy, potentially being in the frequency range of LISA and other missions. To date, three-dimensional simulations of these mergers have not fully modelled the WD disruption, or have used lower resolutions and have not included magnetic fields even though they potentially shape the evolution of the merger remnant. In this work, we simulate the merger of a 1.4M_⊙NS with a 1M_⊙carbon oxygen WD in the magnetohydrodynamic moving mesh code \AREPO. We find that the disruption of the WD forms an accretion disk around the NS, and the subsequent accretion by the NS powers the launch of strongly magnetized, mildly relativistic jets perpendicular to the orbital plane. Although the exact properties of the jets could be altered by unresolved physics around the NS, the event could result in a transient with a larger luminosity than kilonovae. We discuss possible connections to fast blue optical transients (FBOTs) and long-duration gamma-ray bursts. We find that the frequency of GWs released during the merger is too high to be detectable by the LISA mission, but suitable for deci-hertz observatories such as LGWA, BBO or DECIGO.

Authors: J. Moran-Fraile, F. K. Roepke, R. Pakmor, M. A. Aloy, S. T. Ohlmann, F. R. N. Schneider, G. Leidi

Date Published: 5th Jan 2024

Publication Type: Journal

Abstract (Expand)

Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis, which generates forward predictions of models for comparison with observations. The majority of state-of-the-art rapid population synthesis methods are based on analytic fitting formulae to stellar evolution tracks that are computationally cheap to sample statistically over a continuous parameter range. The computational costs of running detailed stellar evolution codes, such as MESA, over wide and densely sampled parameter grids are prohibitive, while stellar-age based interpolation in-between sparsely sampled grid points leads to intolerably large systematic prediction errors. In this work, we provide two solutions for automated interpolation methods that offer satisfactory trade-off points between cost-efficiency and accuracy. We construct a timescale-adapted evolutionary coordinate and use it in a two-step interpolation scheme that traces the evolution of stars from zero age main sequence all the way to the end of core helium burning while covering a mass range from 0.65 to 300 M⊙. The feedforward neural network regression model (first solution) that we train to predict stellar surface variables can make millions of predictions, sufficiently accurate over the entire parameter space, within tens of seconds on a 4-core CPU. The hierarchical nearest-neighbor interpolation algorithm (second solution) that we hard-code to the same end achieves even higher predictive accuracy, the same algorithm remains applicable to all stellar variables evolved over time, but it is two orders of magnitude slower. Our methodological framework is demonstrated to work on the MESA Isochrones and Stellar Tracks (Choi et al. 2016) data set, but is independent of the input stellar catalog. Finally, we discuss the prospective applications of these methods and provide guidelines for generalizing them to higher dimensional parameter spaces.

Authors: K. Maltsev, F. R. N. Schneider, F. K. Röpke, A. I. Jordan, G. A. Qadir, W. E. Kerzendorf, K. Riedmiller, P. van der Smagt

Date Published: 2024

Publication Type: Journal

Abstract

Not specified

Authors: Pau Amaro-Seoane, Jeff Andrews, Manuel Arca Sedda, Abbas Askar, Quentin Baghi, Razvan Balasov, Imre Bartos, Simone S. Bavera, Jillian Bellovary, Christopher P. L. Berry, Emanuele Berti, Stefano Bianchi, Laura Blecha, Stéphane Blondin, Tamara Bogdanović, Samuel Boissier, Matteo Bonetti, Silvia Bonoli, Elisa Bortolas, Katelyn Breivik, Pedro R. Capelo, Laurentiu Caramete, Federico Cattorini, Maria Charisi, Sylvain Chaty, Xian Chen, Martyna Chruślińska, Alvin J. K. Chua, Ross Church, Monica Colpi, Daniel D’Orazio, Camilla Danielski, Melvyn B. Davies, Pratika Dayal, Alessandra De Rosa, Andrea Derdzinski, Kyriakos Destounis, Massimo Dotti, Ioana Dutan, Irina Dvorkin, Gaia Fabj, Thierry Foglizzo, Saavik Ford, Jean-Baptiste Fouvry, Alessia Franchini, Tassos Fragos, Chris Fryer, Massimo Gaspari, Davide Gerosa, Luca Graziani, Paul Groot, Melanie Habouzit, Daryl Haggard, Zoltan Haiman, Wen-Biao Han, Alina Istrate, Peter H. Johansson, Fazeel Mahmood Khan, Tomas Kimpson, Kostas Kokkotas, Albert Kong, Valeriya Korol, Kyle Kremer, Thomas Kupfer, Astrid Lamberts, Shane Larson, Mike Lau, Dongliang Liu, Nicole Lloyd-Ronning, Giuseppe Lodato, Alessandro Lupi, Chung-Pei Ma, Tomas Maccarone, Ilya Mandel, Alberto Mangiagli, Michela Mapelli, Stéphane Mathis, Lucio Mayer, Sean McGee, Barry McKernan, M. Coleman Miller, David F. Mota, Matthew Mumpower, Syeda S. Nasim, Gijs Nelemans, Scott Noble, Fabio Pacucci, Francesca Panessa, Vasileios Paschalidis, Hugo Pfister, Delphine Porquet, John Quenby, Angelo Ricarte, Friedrich K. Röpke, John Regan, Stephan Rosswog, Ashley Ruiter, Milton Ruiz, Jessie Runnoe, Raffaella Schneider, Jeremy Schnittman, Amy Secunda, Alberto Sesana, Naoki Seto, Lijing Shao, Stuart Shapiro, Carlos Sopuerta, Nicholas C. Stone, Arthur Suvorov, Nicola Tamanini, Tomas Tamfal, Thomas Tauris, Karel Temmink, John Tomsick, Silvia Toonen, Alejandro Torres-Orjuela, Martina Toscani, Antonios Tsokaros, Caner Unal, Verónica Vázquez-Aceves, Rosa Valiante, Maurice van Putten, Jan van Roestel, Christian Vignali, Marta Volonteri, Kinwah Wu, Ziri Younsi, Shenghua Yu, Silvia Zane, Lorenz Zwick, Fabio Antonini, Vishal Baibhav, Enrico Barausse, Alexander Bonilla Rivera, Marica Branchesi, Graziella Branduardi-Raymont, Kevin Burdge, Srija Chakraborty, Jorge Cuadra, Kristen Dage, Benjamin Davis, Selma E. de Mink, Roberto Decarli, Daniela Doneva, Stephanie Escoffier, Poshak Gandhi, Francesco Haardt, Carlos O. Lousto, Samaya Nissanke, Jason Nordhaus, Richard O’Shaughnessy, Simon Portegies Zwart, Adam Pound, Fabian Schussler, Olga Sergijenko, Alessandro Spallicci, Daniele Vernieri, Alejandro Vigna-Gómez

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract

Not specified

Authors: Friedrich K. Röpke, Orsola De Marco

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract (Expand)

Convection is one of the most important mixing processes in stellar interiors. Hydrodynamic mass entrainment can bring fresh fuel from neighboring stable layers into a convection zone, modifying theconvection zone, modifying the structure and evolution of the star. Because flows in stellar convection zones are highly turbulent, multidimensional hydrodynamic simulations are fundamental to accurately capture the physics of mixing processes. Under some conditions, strong magnetic fields can be sustained by the action of a turbulent dynamo, adding another layer of complexity and possibly altering the dynamics in the convection zone and at its boundaries. In this study, we used our fully compressible S EVEN -L EAGUE H YDRO code to run detailed and highly resolved three-dimensional magnetohydrodynamic simulations of turbulent convection, dynamo amplification, and convective boundary mixing in a simplified setup whose stratification is similar to that of an oxygen-burning shell in a star with an initial mass of 25 M ⊙ . We find that the random stretching of magnetic field lines by fluid motions in the inertial range of the turbulent spectrum (i.e., a small-scale dynamo) naturally amplifies the seed field by several orders of magnitude in a few convective turnover timescales. During the subsequent saturated regime, the magnetic-to-kinetic energy ratio inside the convective shell reaches values as high as 0.33, and the average magnetic field strength is ∼10 10 G. Such strong fields efficiently suppress shear instabilities, which feed the turbulent cascade of kinetic energy, on a wide range of spatial scales. The resulting convective flows are characterized by thread-like structures that extend over a large fraction of the convective shell. The reduced flow speeds and the presence of magnetic fields with strengths up to 60% of the equipartition value at the upper convective boundary diminish the rate of mass entrainment from the stable layer by ≈20% as compared to the purely hydrodynamic case.

Authors: G. Leidi, R. Andrassy, J. Higl, P. V. F. Edelmann, F. K. Röpke

Date Published: 1st Nov 2023

Publication Type: Journal

Abstract

Not specified

Authors: K. Ertini, G. Folatelli, L. Martinez, M. C. Bersten, J. P. Anderson, C. Ashall, E. Baron, S. Bose, P. J. Brown, C. Burns, J. M. DerKacy, L. Ferrari, L. Galbany, E. Hsiao, S. Kumar, J. Lu, P. Mazzali, N. Morrell, M. Orellana, P. J. Pessi, M. M. Phillips, A. L. Piro, A. Polin, M. Shahbandeh, B. J. Shappee, M. Stritzinger, N. B. Suntzeff, M. Tucker, N. Elias-Rosa, H. Kuncarayakti, C. P. Gutiérrez, A. Kozyreva, T. E. Müller-Bravo, T. -W. Chen, J. T. Hinkle, A. V. Payne, P. Székely, T. Szalai, B. Barna, R. Könyves-Tóth, D. Bánhidi, I. B. Bı́ró, I. Csányi, L. Kriskovits, A. Pál, Zs Szabó, R. Szakáts, K. Vida, J. Vinkó, M. Gromadzki, L. Harvey, M. Nicholl, E. Paraskeva, D. R. Young, B. Englert

Date Published: 8th Sep 2023

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH