Publications

What is a Publication?
1579 Publications visible to you, out of a total of 1579

Abstract (Expand)

Abstract The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-hostribing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Community-driven and highly interdisciplinary, the project is collaborative and supports community standards, open access, and the FAIR data principles. The coordination of community work allowed for an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework links key molecules highlighted from broad omics data analysis and computational modeling to dysregulated pathways in a cell-, tissue- or patient-specific manner. We also employ text mining and AI-assisted analysis to identify potential drugs and drug targets and use topological analysis to reveal interesting structural features of the map. The proposed framework is versatile and expandable, offering a significant upgrade in the arsenal used to understand virus-host interactions and other complex pathologies.

Authors: Anna Niarakis, Marek Ostaszewski, Alexander Mazein, Inna Kuperstein, Martina Kutmon, Marc E. Gillespie, Akira Funahashi, Marcio Luis Acencio, Ahmed Hemedan, Michael Aichem, Karsten Klein, Tobias Czauderna, Felicia Burtscher, Takahiro G. Yamada, Yusuke Hiki, Noriko F. Hiroi, Finterly Hu, Nhung Pham, Friederike Ehrhart, Egon L. Willighagen, Alberto Valdeolivas, Aurelien Dugourd, Francesco Messina, Marina Esteban-Medina, Maria Peña-Chilet, Kinza Rian, Sylvain Soliman, Sara Sadat Aghamiri, Bhanwar Lal Puniya, Aurélien Naldi, Tomáš Helikar, Vidisha Singh, Marco Fariñas Fernández, Viviam Bermudez, Eirini Tsirvouli, Arnau Montagud, Vincent Noël, Miguel Ponce de Leon, Dieter Maier, Angela Bauch, Benjamin M. Gyori, John A. Bachman, Augustin Luna, Janet Pinero, Laura I. Furlong, Irina Balaur, Adrien Rougny, Yohan Jarosz, Rupert W. Overall, Robert Phair, Livia Perfetto, Lisa Matthews, Devasahayam Arokia Balaya Rex, Marija Orlic-Milacic, Monraz Gomez Luis Cristobal, Bertrand De Meulder, Jean Marie Ravel, Bijay Jassal, Venkata Satagopam, Guanming Wu, Martin Golebiewski, Piotr Gawron, Laurence Calzone, Jacques S. Beckmann, Chris T. Evelo, Peter D’Eustachio, Falk Schreiber, Julio Saez-Rodriguez, Joaquin Dopazo, Martin Kuiper, Alfonso Valencia, Olaf Wolkenhauer, Hiroaki Kitano, Emmanuel Barillot, Charles Auffray, Rudi Balling, Reinhard Schneider

Date Published: 19th Dec 2022

Publication Type: Misc

Abstract (Expand)

The report focusses on national and EU-case studies (good practice examples) for integrating patient derived data, such as phenotype and large scale data, for in silico modelling in personalized medicine.Not specified

Authors: Martin Golebiewski, Marc Kirschner, Sylvia Krobitsch, EU-STANDS4PM consortium

Date Published: 15th Dec 2022

Publication Type: Tech report

Abstract (Expand)

Multilingual representations pre-trained with monolingual data exhibit considerably unequal task performances across languages. Previous studies address this challenge with resource-intensive contextualized alignment, which assumes the availability of large parallel data, thereby leaving under-represented language communities behind. In this work, we attribute the data hungriness of previous alignment techniques to two limitations: (i) the inability to sufficiently leverage data and (ii) these techniques are not trained properly. To address these issues, we introduce supervised and unsupervised density-based approaches named Real-NVP and GAN-Real-NVP, driven by Normalizing Flow, to perform alignment, both dissecting the alignment of multilingual subspaces into density matching and density modeling. We complement these approaches with our validation criteria in order to guide the training process. Our experiments encompass 16 alignments, including our approaches, evaluated across 6 language pairs, synthetic data and 5 NLP tasks. We demonstrate the effectiveness of our approaches in the scenarios of limited and no parallel data. First, our supervised approach trained on 20k parallel data (sentences) mostly surpasses Joint-Align and InfoXLM trained on over 100k parallel sentences. Second, parallel data can be removed without sacrificing performance when integrating our unsupervised approach in our bootstrapping procedure, which is theoretically motivated to enforce equality of multilingual subspaces. Moreover, we demonstrate the advantages of validation criteria over validation data for guiding supervised training.

Authors: Wei Zhao, Steffen Eger

Date Published: 12th Dec 2022

Publication Type: InProceedings

Abstract

Not specified

Author: Melanie Kaeser

Date Published: 9th Dec 2022

Publication Type: Master's Thesis

Abstract (Expand)

Drugs that target human thymidylate synthase (hTS), a dimeric enzyme, are widely used in anticancer therapy. However, treatment with classical substrate-site-directed TS inhibitors induces over-expression of this protein and development of drug resistance. We thus pursued an alternative strategy that led us to the discovery of TS-dimer destabilizers. These compounds bind at the monomer-monomer interface and shift the dimerization equilibrium of both the recombinant and the intracellular protein toward the inactive monomers. A structural, spectroscopic, and kinetic investigation has provided evidence and quantitative information on the effects of the interaction of these small molecules with hTS. Focusing on the best among them, E7, we have shown that it inhibits hTS in cancer cells and accelerates its proteasomal degradation, thus causing a decrease in the enzyme intracellular level. E7 also showed a superior anticancer profile to fluorouracil in a mouse model of human pancreatic and ovarian cancer. Thus, over sixty years after the discovery of the first TS prodrug inhibitor, fluorouracil, E7 breaks the link between TS inhibition and enhanced expression in response, providing a strategy to fight drug-resistant cancers.

Authors: L. Costantino, S. Ferrari, M. Santucci, O. M. H. Salo-Ahen, E. Carosati, S. Franchini, A. Lauriola, C. Pozzi, M. Trande, G. Gozzi, P. Saxena, G. Cannazza, L. Losi, D. Cardinale, A. Venturelli, A. Quotadamo, P. Linciano, L. Tagliazucchi, M. G. Moschella, R. Guerrini, S. Pacifico, R. Luciani, F. Genovese, S. Henrich, S. Alboni, N. Santarem, A. da Silva Cordeiro, E. Giovannetti, G. J. Peters, P. Pinton, A. Rimessi, G. Cruciani, R. M. Stroud, R. C. Wade, S. Mangani, G. Marverti, D. D'Arca, G. Ponterini, M. P. Costi

Date Published: 7th Dec 2022

Publication Type: Journal

Abstract (Expand)

<p>Abstract—Estimation of individual treatment effect (ITE) for different types of treatment is a common challenge in therapy assessments, clinical trials and diagnosis. Deep learning methods,ing methods, namely representation based, adversarial, and variational, have shown promising potential in ITE estimation. However, it was unclear whether the hyperparameters of the originally proposed methods were well optimized for different benchmark datasets. To solve these problems, we created a public code library containing representation-based, adversarial, and variational methods written in TensorFlow. In order to have a broader collection of ITE estimation methods, we have also included neural network based meta-learners. The code library is made accessible for reproducibility and facilitating future works in the field of causal inference. Our results demonstrate that performance of most methods can be improved using automatic hyperparameter optimization. Additionally, we review the methods and compare the performance of the optimized models from our library on publicly available datasets. The potential of hyperparameter optimization may encourage researchers to focus on this aspect when creating new methods for inferring individual treatment effect.</p>

Authors: Andrei Sirazitdinov, Marcus Buchwald, Jürgen Hesser, Vincent Heuveline

Date Published: 6th Dec 2022

Publication Type: Misc

Abstract (Expand)

Knowledge of reliable X−H bond dissociation energies (X = C, N, O, S) for amino acids in proteins is key for studying the radical chemistry of proteins. X−H bond dissociation energies of model dipeptides were computed using the isodesmic reaction method at the BMK/6-31+G(2df,p) and G4(MP2)-6X levels of theory. The density functional theory values agree well with the composite- level calculations. By this high level of theory, combined with a careful choice of reference compounds and peptide model systems, our work provides a highly valuable data set of bond dissociation energies with unprecedented accuracy and comprehensiveness. It will likely prove useful to predict protein biochemistry involving radicals, e.g., by machine learning.

Authors: Authors Wojtek Treyde, Kai Riedmiller, Frauke Gräter

Date Published: 1st Dec 2022

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH