Nonadiabatic Simulation of Exciton Dynamics in Organic Semiconductors Using Neural Network-Based Frenkel Hamiltonian and Gradients

Abstract:
No abstract specified

SEEK ID: https://publications.h-its.org/publications/1858

DOI: 10.1021/acs.jctc.4c00220

Research Groups: SIMPLAIX

Publication type: Journal

Journal: Journal of Chemical Theory and Computation

Publisher: American Chemical Society (ACS)

Citation: J. Chem. Theory Comput. 2024, 20, 14, 6160–6174

Date Published: 8th Jul 2024

URL:

Registered Mode: manually

Authors: Farhad Ghalami, Philipp M. Dohmen, Mila Krämer, Marcus Elstner, Weiwei Xie

Citation
Ghalami, F., Dohmen, P. M., Krämer, M., Elstner, M., & Xie, W. (2024). Nonadiabatic Simulation of Exciton Dynamics in Organic Semiconductors Using Neural Network-Based Frenkel Hamiltonian and Gradients. In Journal of Chemical Theory and Computation (Vol. 20, Issue 14, pp. 6160–6174). American Chemical Society (ACS). https://doi.org/10.1021/acs.jctc.4c00220
Activity

Views: 287

Created: 24th Aug 2024 at 05:54

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH