EDITORIAL: Chemical Compound Space Exploration by Multiscale High-Throughput Screening and Machine Learning

Abstract:
No abstract specified

SEEK ID: https://publications.h-its.org/publications/1856

Filename: gryn-ova-et-al-2024-editorial-chemical-compound-space-exploration-by-multiscale-high-throughput-screening-and-machine.pdf 

Format: PDF document

Size: 1.63 MB

SEEK ID: https://publications.h-its.org/publications/1856

DOI: 10.1021/acs.jcim.4c01300

Research Groups: SIMPLAIX

Publication type: Journal

Journal: Journal of Chemical Information and Modeling

Publisher: American Chemical Society (ACS)

Citation: J. Chem. Inf. Model. 2024, 64, 15, 5737–5738

Date Published: 12th Aug 2024

URL:

Registered Mode: manually

Authors: Ganna Gryn’ova, Tristan Bereau, Carolin Müller, Pascal Friederich, Rebecca C. Wade, Ariane Nunes-Alves, Thereza A. Soares, Kenneth Merz

Citation
Gryn’ova, G., Bereau, T., Müller, C., Friederich, P., Wade, R. C., Nunes-Alves, A., Soares, T. A., & Merz, K., Jr. (2024). EDITORIAL: Chemical Compound Space Exploration by Multiscale High-Throughput Screening and Machine Learning. In Journal of Chemical Information and Modeling (Vol. 64, Issue 15, pp. 5737–5738). American Chemical Society (ACS). https://doi.org/10.1021/acs.jcim.4c01300
Activity

Views: 330   Downloads: 1

Created: 21st Aug 2024 at 09:43

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH