EDITORIAL: Chemical Compound Space Exploration by Multiscale High-Throughput Screening and Machine Learning

Abstract:
No abstract specified

SEEK ID: https://publications.h-its.org/publications/1855

DOI: 10.1021/acs.jcim.4c01300

Research Groups: Molecular and Cellular Modeling

Publication type: Journal

Journal: Journal of Chemical Information and Modeling

Citation: J. Chem. Inf. Model. 64(15):5737-5738

Date Published: 12th Aug 2024

Registered Mode: by DOI

Authors: Ganna Gryn’ova, Tristan Bereau, Carolin Müller, Pascal Friederich, Rebecca C. Wade, Ariane Nunes-Alves, Thereza A. Soares, Kenneth Merz

help Submitter
Citation
Gryn’ova, G., Bereau, T., Müller, C., Friederich, P., Wade, R. C., Nunes-Alves, A., Soares, T. A., & Merz, K., Jr. (2024). EDITORIAL: Chemical Compound Space Exploration by Multiscale High-Throughput Screening and Machine Learning. In Journal of Chemical Information and Modeling (Vol. 64, Issue 15, pp. 5737–5738). American Chemical Society (ACS). https://doi.org/10.1021/acs.jcim.4c01300
Activity

Views: 614

Created: 16th Aug 2024 at 09:57

Last updated: 16th Aug 2024 at 09:58

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH