Comparative analysis of drug-salt-polymer interactions by experiment and molecular simulation improves biopharmaceutical performance
View Publication
Export
Abstract:
Abstract
The propensity of poorly water-soluble drugs to aggregate at supersaturation impedes their bioavailability. Supersaturated amorphous drug-salt-polymer systems provide an emergent approach to this problem. However, the effects of polymers on drug-drug interactions in aqueous phase are largely unexplored and it is unclear how to choose an optimal salt-polymer combination for a particular drug. Here, we describe a comparative experimental and computational characterization of amorphous solid dispersions containing the drug celecoxib, and a polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA) or hydroxypropyl methylcellulose acetate succinate, with or without Na
+
/K
+
salts. Classical models for drug-polymer interactions fail to identify the best drug-salt-polymer combination. In contrast, more stable drug-polymer interaction energies computed from molecular dynamics simulations correlate with prolonged stability of supersaturated amorphous drug-salt-polymer systems, along with better dissolution and pharmacokinetic profiles. The celecoxib-salt-PVP-VA formulations exhibit excellent biopharmaceutical performance, offering the prospect of a low-dosage regimen for this widely used anti-inflammatory, thereby increasing cost-effectiveness, and reducing side-effects.
SEEK ID: https://publications.h-its.org/publications/1719
DOI: 10.1038/s42004-023-01006-0
Research Groups: Molecular and Cellular Modeling
Publication type: Journal
Journal: Communications Chemistry
Citation: Commun Chem 6(1),201
Date Published: 1st Dec 2023
Registered Mode: by DOI
Submitter
Citation
Mukesh, S., Mukherjee, G., Singh, R., Steenbuck, N., Demidova, C., Joshi, P., Sangamwar, A. T., & Wade, R. C. (2023). Comparative analysis of drug-salt-polymer interactions by experiment and molecular simulation improves biopharmaceutical performance. In Communications Chemistry (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s42004-023-01006-0
Activity
Views: 2512
Created: 17th Oct 2023 at 15:02
Last updated: 5th Mar 2024 at 21:25
Tags
This item has not yet been tagged.
Attributions
None