A versatile and interoperable computational framework for the analysis and modeling of COVID-19 disease mechanisms

Abstract:
      Abstract
      The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Community-driven and highly interdisciplinary, the project is collaborative and supports community standards, open access, and the FAIR data principles. The coordination of community work allowed for an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework links key molecules highlighted from broad omics data analysis and computational modeling to dysregulated pathways in a cell-, tissue- or patient-specific manner. We also employ text mining and AI-assisted analysis to identify potential drugs and drug targets and use topological analysis to reveal interesting structural features of the map. The proposed framework is versatile and expandable, offering a significant upgrade in the arsenal used to understand virus-host interactions and other complex pathologies.

Citation: biorxiv;2022.12.17.520865v1,[Preprint]

Date Published: 19th Dec 2022

Registered Mode: by DOI

Authors: Anna Niarakis, Marek Ostaszewski, Alexander Mazein, Inna Kuperstein, Martina Kutmon, Marc E. Gillespie, Akira Funahashi, Marcio Luis Acencio, Ahmed Hemedan, Michael Aichem, Karsten Klein, Tobias Czauderna, Felicia Burtscher, Takahiro G. Yamada, Yusuke Hiki, Noriko F. Hiroi, Finterly Hu, Nhung Pham, Friederike Ehrhart, Egon L. Willighagen, Alberto Valdeolivas, Aurelien Dugourd, Francesco Messina, Marina Esteban-Medina, Maria Peña-Chilet, Kinza Rian, Sylvain Soliman, Sara Sadat Aghamiri, Bhanwar Lal Puniya, Aurélien Naldi, Tomáš Helikar, Vidisha Singh, Marco Fariñas Fernández, Viviam Bermudez, Eirini Tsirvouli, Arnau Montagud, Vincent Noël, Miguel Ponce de Leon, Dieter Maier, Angela Bauch, Benjamin M. Gyori, John A. Bachman, Augustin Luna, Janet Pinero, Laura I. Furlong, Irina Balaur, Adrien Rougny, Yohan Jarosz, Rupert W. Overall, Robert Phair, Livia Perfetto, Lisa Matthews, Devasahayam Arokia Balaya Rex, Marija Orlic-Milacic, Monraz Gomez Luis Cristobal, Bertrand De Meulder, Jean Marie Ravel, Bijay Jassal, Venkata Satagopam, Guanming Wu, Martin Golebiewski, Piotr Gawron, Laurence Calzone, Jacques S. Beckmann, Chris T. Evelo, Peter D’Eustachio, Falk Schreiber, Julio Saez-Rodriguez, Joaquin Dopazo, Martin Kuiper, Alfonso Valencia, Olaf Wolkenhauer, Hiroaki Kitano, Emmanuel Barillot, Charles Auffray, Rudi Balling, Reinhard Schneider

help Submitter
Citation
Niarakis, A., Ostaszewski, M., Mazein, A., Kuperstein, I., Kutmon, M., Gillespie, M. E., Funahashi, A., Acencio, M. L., Hemedan, A., Aichem, M., Klein, K., Czauderna, T., Burtscher, F., Yamada, T. G., Hiki, Y., Hiroi, N. F., Hu, F., Pham, N., Ehrhart, F., … . (2022). A versatile and interoperable computational framework for the analysis and modeling of COVID-19 disease mechanisms. In []. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.12.17.520865
Activity

Views: 3638

Created: 23rd Jan 2023 at 10:57

Last updated: 5th Mar 2024 at 21:25

help Attributions

None

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH