Publications

What is a Publication?
88 Publications visible to you, out of a total of 88

Abstract

Not specified

Authors: Nikos Gianniotis, Kai L. Polsterer, Iliana Isabel Cortés Pérez

Date Published: 2024

Publication Type: InProceedings

Abstract (Expand)

ABSTRACT Globular clusters (GCs) are powerful tracers of the galaxy assembly process, and have already been used to obtain a detailed picture of the progenitors of the Milky Way (MW). Using the E-MOSAICS (MW). Using the E-MOSAICS cosmological simulation of a (34.4 Mpc)3 volume that follows the formation and co-evolution of galaxies and their star cluster populations, we develop a method to link the origin of GCs to their observable properties. We capture this complex link using a supervised deep learning algorithm trained on the simulations, and predict the origin of individual GCs (whether they formed in the main progenitor or were accreted from satellites) based solely on extragalactic observables. An artificial neural network classifier trained on ∼50 000 GCs hosted by ∼700 simulated galaxies successfully predicts the origin of GCs in the test set with a mean accuracy of 89 per cent for the objects with $\rm [Fe/H]\lt -0.5$ that have unambiguous classifications. The network relies mostly on the alpha-element abundances, metallicities, projected positions, and projected angular momenta of the clusters to predict their origin. A real-world test using the known progenitor associations of the MW GCs achieves up to 90 per cent accuracy, and successfully identifies as accreted most of the GCs in the inner Galaxy associated to the Kraken progenitor, as well as all the Gaia-Enceladus GCs. We demonstrate that the model is robust to observational uncertainties, and develop a method to predict the classification accuracy across observed galaxies. The classifier can be optimized for available observables (e.g. to improve the accuracy by including GC ages), making it a valuable tool to reconstruct the assembly histories of galaxies in upcoming wide-field surveys.

Authors: Sebastian Trujillo-Gomez, J M Diederik Kruijssen, Joel Pfeffer, Marta Reina-Campos, Robert A Crain, Nate Bastian, Ivan Cabrera-Ziri

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract

Not specified

Authors: F. Pozo Nunez, N. Gianniotis, K.L. Polsterer

Date Published: 18th Apr 2023

Publication Type: Journal

Abstract (Expand)

We provide a brief, and inevitably incomplete overview of the use of Machine Learning (ML) and other AI methods in astronomy, astrophysics, and cosmology. Astronomy entered the big data era with the first digital sky surveys in the early 1990s and the resulting Terascale data sets, which required automating of many data processing and analysis tasks, for example the star-galaxy separation, with billions of feature vectors in hundreds of dimensions. The exponential data growth continued, with the rise of synoptic sky surveys and the Time Domain Astronomy, with the resulting Petascale data streams and the need for a real-time processing, classification, and decision making. A broad variety of classification and clustering methods have been applied for these tasks, and this remains a very active area of research. Over the past decade we have seen an exponential growth of the astronomical literature involving a variety of ML/AI applications of an ever increasing complexity and sophistication. ML and AI are now a standard part of the astronomical toolkit. As the data complexity continues to increase, we anticipate further advances leading towards a collaborative human-AI discovery.

Authors: S. G. Djorgovski, Ashish Mahabal, M. J. Graham, Kai L. Polsterer, Alberto Krone-Martins

Date Published: 1st Apr 2023

Publication Type: InCollection

Abstract (Expand)

Abstract Photometric reverberation mapping can detect the radial extent of the accretion disc (AD) in Active Galactic Nuclei by measuring the time delays between light curves observed in differentrves observed in different continuum bands. Quantifying the constraints on the efficiency and accuracy of the delay measurements is important for recovering the AD size-luminosity relation, and potentially using quasars as standard candles. We have explored the possibility of determining the AD size of quasars using next-generation Big Data surveys. We focus on the Legacy Survey of Space and Time (LSST) at the Vera C. Rubin Observatory, which will observe several thousand quasars with the Deep Drilling Fields and up to 10 million quasars for the main survey in six broadband filter during its 10-year operational lifetime. We have developed extensive simulations that take into account the characteristics of the LSST survey and the intrinsic properties of the quasars. The simulations are used to characterise the light curves from which AD sizes are determined using various algorithms. We find that the time delays can be recovered with an accuracy of 5 and 15% for light curves with a time sampling of 2 and 5 days, respectively. The results depend strongly on the redshift of the source and the relative contribution of the emission lines to the bandpasses. Assuming an optically thick and geometrically thin AD, the recovered time-delay spectrum is consistent with black hole masses derived with 30% uncertainty.

Authors: F Pozo Nuñez, C Bruckmann, S Desamutara, B Czerny, S Panda, A P Lobban, G Pietrzyński, K L Polsterer

Date Published: 6th Feb 2023

Publication Type: Journal

Abstract

Not specified

Author: Fenja Schweder

Date Published: 1st Feb 2023

Publication Type: Master's Thesis

Abstract (Expand)

Abstract As Setti and Woltjer noted back in 1973, one can use quasars to construct the Hubble diagram; however, the actual application of the idea was not that straightforward. It took years to implementIt took years to implement the proposition successfully. Most ways to employ quasars for cosmology now require an advanced understanding of their structure, step by step. We briefly review this progress, with unavoidable personal biases, and concentrate on bright unobscured sources. We will mention the problem of the gas flow character close to the innermost stable circular orbit near the black hole, as discussed five decades ago. This problem later led to the development of the slim disk scenario and is recently revived in the context of Magnetically Arrested Disks (MAD) and Standard and Normal Evolution (SANE) models. We also discuss the hot or warm corona issue, which is still under debate and complicates the analysis of X-ray reflection. We present the scenario of the formation of the low ionization part of the Broad Line Region as a failed wind powered by radiation pressure acting on dust (Failed Radiatively Driven Dusty Outflow – FRADO). Next, we examine the cosmological constraints currently achievable with quasars, primarily concentrating on light echo methods (continuum time delays and spectral-line time delays to the continuum) that are (or should be) incorporating the progress mentioned above. Finally, we briefly discuss prospects in this lively subject area.

Authors: Bożena Czerny, Shulei Cao, Vikram Kumar Jaiswal, Vladimír Karas, Narayan Khadka, Mary Loli Martínez-Aldama, Mohammad Hassan Naddaf, Swayamtrupta Panda, Francisco Pozo Nuñez, Raj Prince, Bharat Ratra, Marzena Sniegowska, Zhefu Yu, Michal Zajaček

Date Published: 1st Feb 2023

Publication Type: Journal

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH