Publications

What is a Publication?
47 Publications visible to you, out of a total of 47

Abstract (Expand)

Products of stellar mergers are predicted to be common in stellar populations and can potentially explain stars with peculiar properties. When the merger occurs after the initially more massive starar has evolved into the Hertzsprung gap, the merger product may remain in the blue part of the Hertzsprung–Russell diagram for millions of years. Such objects could, therefore, explain the overabundance of observed blue stars, such as blue supergiants. However, it is currently not straightforward to distinguish merger products from genuine single stars or other stars with similar surface diagnostics. In this work, we made detailed asteroseismic comparisons between models of massive post-main-sequence merger products and genuine single stars to identify which asteroseismic diagnostics can be used to distinguish them. In doing so, we developed tools for the relatively young field of merger seismology. Genuine single stars in the Hertzsprung gap are fully radiative, while merger products have a convective He-burning core and convective H-burning shell while occupying similar locations in the Hertzsprung–Russell diagram. These major structural differences are reflected in lower asymptotic period spacing values for merger products and the appearance of deep dips in their period spacing patterns. Our genuine single-star models with masses above roughly 11.4 solar masses develop short-lived intermediate convective zones during their Hertzsprung gap evolution. This also leads to deep dips in their period spacing patterns. Because of the lack of a convective core, merger products and genuine single stars can be distinguished based on their asymptotic period spacing value in this mass range. We performed the comparisons with and without the effects of slow rotation included in the pulsation equations and conclude that the two types of stars are seismically distinguishable in both cases. The observability of the distinguishing asteroseismic features of merger products can now be assessed and exploited in practice.

Authors: J. Henneco, F. R. N. Schneider, S. Hekker, C. Aerts

Date Published: 1st Oct 2024

Publication Type: Journal

Abstract (Expand)

Stellar mergers are responsible for a wide variety of phenomena such as rejuvenated blue stragglers, highly magnetised stars, spectacular transients, iconic nebulae, and stars with peculiar surface chemical abundances and rotation rates. Before stars merge, they enter a contact phase. Here, we investigate which initial binary-star configurations lead to contact and classical common-envelope (CE) phases and assess the likelihood of a subsequent merger. To this end, we computed a grid of about 6000 detailed 1D binary evolution models with initial component masses of 0.5 − 20.0 M⊙ at solar metallicity. Both components were evolved, and rotation and tides were taken into account. We identified five mechanisms that lead to contact and mergers: runaway mass transfer, mass loss through the outer Lagrange point L2, expansion of the accretor, orbital decay because of tides, and non-conservative mass transfer. At least 40% of mass-transferring binaries with initial primary-star masses of 5 − 20 M⊙ evolve into a contact phase; > 12% and > 19% likely merge and evolve into a CE phase, respectively. Because of the non-conservative mass transfer in our models, classical CE evolution from late Case-B and Case-C binaries is only found for initial mass ratios qi < 0.15 − 0.35. For larger mass ratios, we find stable mass transfer. In early Case-B binaries, contact occurs for initial mass ratios qi < 0.15 − 0.35, while in Case-A mass transfer, this is the case for all qi in binaries with the initially closest orbits and qi < 0.35 for initially wider binaries. Our models predict that most Case-A binaries with mass ratios of q < 0.5 upon contact mainly get into contact because of runaway mass transfer and accretor expansion on a thermal timescale, with subsequent L2-overflow in more than half of the cases. Thus, these binaries likely merge quickly after establishing contact or remain in contact only for a thermal timescale. On the contrary, Case-A contact binaries with higher mass ratios form through accretor expansion on a nuclear timescale and can thus give rise to long-lived contact phases before a possible merger. Observationally, massive contact binaries are almost exclusively found with mass ratios q > 0.5, confirming our model expectations. Because of non-conservative mass transfer with mass transfer efficiencies of 15 − 65%, 5 − 25%, and 25 − 50% in Case-A, -B, and -C mass transfer, respectively (for primary-star masses above 3 M⊙), our contact, merger, and classical CE incidence rates are conservative lower limits. With more conservative mass transfer, these incidences would increase. Moreover, in most binaries, the non-accreted mass cannot be ejected, raising the question of the further evolution of such systems. The non-accreted mass may settle into circumstellar and circumbinary disks, but could also lead to further contact systems and mergers. Overall, contact binaries are a frequent and fascinating result of binary mass transfer of which the exact outcomes still remain to be understood and explored further.

Authors: J. Henneco, F. R. N. Schneider, E. Laplace

Date Published: 1st Feb 2024

Publication Type: Journal

Abstract (Expand)

Abstract The dominant mechanism forming multiple stellar systems in the high-mass regime ( M *  ≳ 8  M ⊙ ) remained unknown because direct imaging of multiple protostellar systems at early phases of ⊙ ) remained unknown because direct imaging of multiple protostellar systems at early phases of high-mass star formation is very challenging. High-mass stars are expected to form in clustered environments containing binaries and higher-order multiplicity systems. So far only a few high-mass protobinary systems, and no definitive higher-order multiples, have been detected. Here we report the discovery of one quintuple, one quadruple, one triple and four binary protostellar systems simultaneously forming in a single high-mass protocluster, G333.23–0.06, using Atacama Large Millimeter/submillimeter Array high-resolution observations. We present a new example of a group of gravitationally bound binary and higher-order multiples during their early formation phases in a protocluster. This provides the clearest direct measurement of the initial configuration of primordial high-order multiple systems, with implications for the in situ multiplicity and its origin. We find that the binary and higher-order multiple systems, and their parent cores, show no obvious sign of disk-like kinematic structure. We conclude that the observed fragmentation into binary and higher-order multiple systems can be explained by core fragmentation, indicating its crucial role in establishing the multiplicity during high-mass star cluster formation.

Authors: Shanghuo Li, Patricio Sanhueza, Henrik Beuther, Huei-Ru Vivien Chen, Rolf Kuiper, Fernando A. Olguin, Ralph E. Pudritz, Ian W. Stephens, Qizhou Zhang, Fumitaka Nakamura, Xing Lu, Rajika L. Kuruwita, Takeshi Sakai, Thomas Henning, Kotomi Taniguchi, Fei Li

Date Published: 15th Jan 2024

Publication Type: Journal

Abstract

Not specified

Authors: J. Bodensteiner, H. Sana, P. L. Dufton, C. Wang, N. Langer, G. Banyard, L. Mahy, A. de Koter, S. E. de Mink, C. J. Evans, Y. Götberg, V. Hénault-Brunet, L. R. Patrick, F. R. N. Schneider

Date Published: 1st Dec 2023

Publication Type: Journal

Abstract (Expand)

Observations of individual massive stars, super-luminous supernovae, gamma-ray bursts, and gravitational wave events involving spectacular black hole mergers indicate that the low-metallicity Universe is fundamentally different from our own Galaxy. Many transient phenomena will remain enigmatic until we achieve a firm understanding of the physics and evolution of massive stars at low metallicity (Z). The Hubble Space Telescope has devoted 500 orbits to observing ∼250 massive stars at low Z in the ultraviolet (UV) with the COS and STIS spectrographs under the ULLYSES programme. The complementary X-Shooting ULLYSES (XShootU) project provides an enhanced legacy value with high-quality optical and near-infrared spectra obtained with the wide-wavelength coverage X-shooter spectrograph at ESO’s Very Large Telescope. We present an overview of the XShootU project, showing that combining ULLYSES UV and XShootU optical spectra is critical for the uniform determination of stellar parameters such as effective temperature, surface gravity, luminosity, and abundances, as well as wind properties such as mass-loss rates as a function of Z. As uncertainties in stellar and wind parameters percolate into many adjacent areas of astrophysics, the data and modelling of the XShootU project is expected to be a game changer for our physical understanding of massive stars at low Z. To be able to confidently interpret James Webb Space Telescope spectra of the first stellar generations, the individual spectra of low-Z stars need to be understood, which is exactly where XShootU can deliver. Table B.1 and full Table B.2 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/675/A154 Based on observations collected at the European Southern Observatory under ESO programme 106.211Z.001.

Authors: Jorick S. Vink, A. Mehner, P. A. Crowther, A. Fullerton, M. Garcia, F. Martins, N. Morrell, L. M. Oskinova, N. St-Louis, A. ud-Doula, A. A. C. Sander, H. Sana, J. -C. Bouret, B. Kubátová, P. Marchant, L. P. Martins, A. Wofford, J. Th. van Loon, O. Grace Telford, Y. Götberg, D. M. Bowman, C. Erba, V. M. Kalari, M. Abdul-Masih, T. Alkousa, F. Backs, C. L. Barbosa, S. R. Berlanas, M. Bernini-Peron, J. M. Bestenlehner, R. Blomme, J. Bodensteiner, S. A. Brands, C. J. Evans, A. David-Uraz, F. A. Driessen, K. Dsilva, S. Geen, V. M. A. Gómez-González, L. Grassitelli, W. -R. Hamann, C. Hawcroft, A. Herrero, E. R. Higgins, D. John Hillier, R. Ignace, A. G. Istrate, L. Kaper, N. D. Kee, C. Kehrig, Z. Keszthelyi, J. Klencki, A. de Koter, R. Kuiper, E. Laplace, C. J. K. Larkin, R. R. Lefever, C. Leitherer, D. J. Lennon, L. Mahy, J. Maíz Apellániz, G. Maravelias, W. Marcolino, A. F. McLeod, S. E. de Mink, F. Najarro, M. S. Oey, T. N. Parsons, D. Pauli, M. G. Pedersen, R. K. Prinja, V. Ramachandran, M. C. Ramírez-Tannus, G. N. Sabhahit, A. Schootemeijer, S. Reyero Serantes, T. Shenar, G. S. Stringfellow, N. Sudnik, F. Tramper, L. Wang

Date Published: 1st Jul 2023

Publication Type: Journal

Abstract

Not specified

Authors: Fabian R. N. Schneider, Philipp Podsiadlowski, Eva Laplace

Date Published: 15th Jun 2023

Publication Type: Journal

Abstract (Expand)

Context. Observations of young multiple star systems find a bimodal distribution in companion frequency and separation. The origin of these peaks has often been attributed to binary formation via corebeen attributed to binary formation via core and disc fragmentation. However, theory and simulations suggest that young stellar systems that form via core fragmentation undergo significant orbital evolution. Aims. We investigate the influence of the environment on the formation and orbital evolution of multiple star systems, and how core fragmentation contributes to the formation of close (20 − 100 AU) binaries. We use multiple simulations of star formation in giant molecular clouds and compare them to the multiplicity statistics of the Perseus star-forming region. Methods. Simulations were run with the adaptive mesh refinement code RAMSES with sufficient resolution to resolve core fragmentation beyond 400 AU and dynamical evolution down to 16.6 AU, but without the possibility of resolving disc fragmentation. The evolution of the resulting stellar systems was followed over millions of years. Results. We find that star formation in lower gas density environments is more clustered; however, despite this, the fractions of systems that form via dynamical capture and core fragmentation are broadly consistent at ∼40% and ∼60%, respectively. In all gas density environments, we find that the typical scale at which systems form via core fragmentation is 10 3 − 3.5  AU. After formation, we find that systems that form via core fragmentation have slightly lower inspiral rates (∼10 −1.68  AU yr −1 measured over the first 10 000 yr) compared to dynamical capture (∼10 −1.32  AU yr −1 ). We then compared the simulation with the conditions most similar to the Perseus star-forming region to determine whether the observed bimodal distribution can be replicated. We find that it can be replicated, but it is sensitive to the evolutionary state of the simulation. Conclusions. Our results indicate that a significant number of low-mass close binaries with separations from 20 − 100 AU can be produced via core fragmentation or dynamical capture due to efficient inspiral, without the need for a further contribution from disc fragmentation.

Authors: Rajika L. Kuruwita, Troels Haugbølle

Date Published: 1st Jun 2023

Publication Type: Journal

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH