Publications

What is a Publication?
20 Publications visible to you, out of a total of 20

Abstract (Expand)

Next generation sequencing (NGS) technologies have led to a ubiquity of molecular sequence data. This data avalanche is particularly challenging in metagenetics, which focuses on taxonomic identification of sequences obtained from diverse microbial environments. Phylogenetic placement methods determine how these sequences fit into an evolutionary context. Previous implementations of phylogenetic placement algorithms, such as the evolutionary placement algorithm (EPA) included in RAxML, or PPLACER, are being increasingly used for this purpose. However, due to the steady progress in NGS technologies, the current implementations face substantial scalability limitations. Herein, we present EPA-NG, a complete reimplementation of the EPA that is substantially faster, offers a distributed memory parallelization, and integrates concepts from both, RAxML-EPA and PPLACER. EPA-NG can be executed on standard shared memory, as well as on distributed memory systems (e.g., computing clusters). To demonstrate the scalability of EPA-NG, we placed 1 billion metagenetic reads from the Tara Oceans Project onto a reference tree with 3748 taxa in just under 7 h, using 2048 cores. Our performance assessment shows that EPA-NG outperforms RAxML-EPA and PPLACER by up to a factor of 30 in sequential execution mode, while attaining comparable parallel efficiency on shared memory systems. We further show that the distributed memory parallelization of EPA-NG scales well up to 2048 cores. EPA-NG is available under the AGPLv3 license: https://github.com/Pbdas/epa-ng.

Authors: Pierre Barbera, Alexey M Kozlov, Lucas Czech, Benoit Morel, Diego Darriba, Tomáš Flouri, Alexandros Stamatakis

Date Published: 2018

Publication Type: Journal

Abstract

Not specified

Authors: Benoit Morel, Alexey M Kozlov, Alexandros Stamatakis

Date Published: 2018

Publication Type: Journal

Abstract

Not specified

Authors: Alexey Kozlov, Diego Darriba, Tomas Flouri, Benoit Morel, Alexandros Stamatakis

Date Published: 2018

Publication Type: Journal

Abstract

Not specified

Authors: Benoit Morel, Tomas Flouri, Alexandros Stamatakis

Date Published: 1st Dec 2017

Publication Type: InProceedings

Abstract

Not specified

Authors: M. Wlotzka, T. Morel, A. Piacentini, V. Heuveline

Date Published: 2017

Publication Type: Journal

Abstract (Expand)

Phylogenetics, the study of evolutionary relationships among biological entities, plays an essential role in biological and medical research. Its applications range from answering fundamental questions, such as understanding the origin of life, to solving more practical problems, such as tracking pandemics in real time. Nowadays, phylogenetic trees are typically inferred from molecular data, via likelihood-based methods. Those methods strive to find the tree that maximizes a likelihood score under a given stochastic model of sequence evolution. This work focuses on the inference of species as well as gene phylogenetic trees. Species evolve through speciation and extinction events. Genes evolve through events such as gene duplication, gene loss, and horizontal gene transfer. Both processes are strongly correlated, because genes belong to species and evolve within their genomes. One can deploy models of gene evolution and to exploit this correlation between species and gene evolutionary histories, in order to improve the accuracy of phylogenetic tree inference methods. However, the most widely used phylogenetic tree inference methods disregard these phenomena and focus on models of sequence evolution only. In addition, current maximum likelihood methods are computationally expensive. This is particularly challenging as the community faces a dramatically growing amount of available molecular data, due to recent advances in sequencing technologies. To handle this data avalanche, we urgently need tools that offer faster algorithms, as well as efficient parallel implementations. In this thesis, I develop new maximum likelihood methods, that explicitly model the relationships between species and gene histories, in order to infer more accurate phylogenetic trees. Those methods employ both, new heuristics, and dedicated parallelization schemes, in order to accelerate the inference process. My first project, ParGenes, is a parallel software pipeline for inferring gene family trees from a set of per-gene multiple sequence alignments. For each input alignment, it determines the best-fit model of sequence evolution, and subsequently searches for the gene family tree with the highest likelihood under this model. To this end, ParGenes uses several state-of-the-art tools, and runs them in parallel using a novel scheduling strategy. My second project, SpeciesRax, is a method for inferring a rooted species tree from a set of unrooted gene family trees. SpeciesRax strives to find the rooted species tree that maximizes the likelihood score under a dedicated model of gene evolution, that accounts for gene duplication, gene loss, and horizontal gene transfer. In addition, I introduce a new method for assessing the confidence in the resulting species tree, as well as a novel method for estimating its branch lengths. My third project, GeneRax, is a novel maximum likelihood method for gene family tree inference. GeneRax takes as input a rooted species tree as well as a set of (per-gene) multiple sequence alignments, and outputs one gene family tree per input alignment. To this end, I introduce the so-called joint likelihood function, which combines both, a model of sequence evolution, and a model of gene evolution. In addition, GeneRax can estimate the pattern of gene duplication, gene loss, and horizontal gene transfer events that occured along the input species tree.

Author: Benoit Morel

Date Published: No date defined

Publication Type: Doctoral Thesis

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH