Publications

50 Publications visible to you, out of a total of 50

Abstract (Expand)

Broad-spectrum anti-infective chemotherapy agents with activity against Trypanosomes, Leishmania, and Mycobacterium tuberculosis species were identified from a high-throughput phenotypic screening program of the 456 compounds belonging to the Ty-Box, an in-house industry database. Compound characterization using machine learning approaches enabled the identification and synthesis of 44 compounds with broad-spectrum antiparasitic activity and minimal toxicity against Trypanosoma brucei, Leishmania Infantum, and Trypanosoma cruzi. In vitro studies confirmed the predictive models identified in compound 40 which emerged as a new lead, featured by an innovative N-(5-pyrimidinyl)benzenesulfonamide scaffold and promising low micromolar activity against two parasites and low toxicity. Given the volume and complexity of data generated by the diverse high-throughput screening assays performed on the compounds of the Ty-Box library, the chemoinformatic and machine learning tools enabled the selection of compounds eligible for further evaluation of their biological and toxicological activities and aided in the decision-making process toward the design and optimization of the identified lead.

Authors: P. Linciano, A. Quotadamo, R. Luciani, M. Santucci, K. M. Zorn, D. H. Foil, T. R. Lane, A. Cordeiro da Silva, N. Santarem, C. B Moraes, L. Freitas-Junior, U. Wittig, W. Mueller, M. Tonelli, S. Ferrari, A. Venturelli, S. Gul, M. Kuzikov, B. Ellinger, J. Reinshagen, S. Ekins, M. P. Costi

Date Published: 3rd Nov 2023

Publication Type: Journal

Abstract (Expand)

SABIO-RK is a database for biochemical reactions and their kinetics. Data in SABIO-RK are inherently multidimensional and complex. The complex relationships between the data are often difficult to follow or even not represented when using standard tabular views. With an increasing number of data points the mismatch between tables and insights becomes more obvious, and getting an overview of the data becomes harder. Such complex data benefit from being presented using specially adapted visual tools. Visualization is a natural and user-friendly way to quickly get an overview of the data and to detect clusters and outliers. Here, we describe the implementation of a variety of visualization concepts into a common interface within the SABIO-RK biochemical reaction kinetics database. For that purpose, we use a heat map, parallel coordinates and scatter plots to allow the interactive visual exploration of general entry-based information of biochemical reactions and specific kinetic parameter values. Database URL https://sabiork.h-its.org/.

Authors: D. Dudas, U. Wittig, M. Rey, A. Weidemann, W. Muller

Date Published: 31st Mar 2023

Publication Type: Journal

Abstract (Expand)

In addition to the ubiquitous big data, one key challenge indata processing and management in the life sciences is the diversity ofsmall data. Diverse pieces of small data have to be transformed intostandards-compliant data. Here, the challenge lies not in the difficulty ofsingle steps that need to be performed, but rather in the fact that manytransformation tasks are to be performed once or only a few times. Thislimits the time that can be put into automated approaches, which inturn severely limits the verifiability of such transformations.As much of the data to be processed is stored in spreadsheets, withinthis paper we justify and propose a lightweight recording-based solutionthat works on a wide variety of spreadsheet programs, from MicrosoftExcel to Google Docs.

Authors: Wolfgang Müller, Lukrecia Mertova

Date Published: 23rd Feb 2023

Publication Type: Journal

Abstract (Expand)

The design of biocatalytic reaction systems is highly complex owing to the dependency of the estimated kinetic parameters on the enzyme, the reaction conditions, and the modeling method. Consequently, reproducibility of enzymatic experiments and reusability of enzymatic data are challenging. We developed the XML-based markup language EnzymeML to enable storage and exchange of enzymatic data such as reaction conditions, the time course of the substrate and the product, kinetic parameters and the kinetic model, thus making enzymatic data findable, accessible, interoperable and reusable (FAIR). The feasibility and usefulness of the EnzymeML toolbox is demonstrated in six scenarios, for which data and metadata of different enzymatic reactions are collected and analyzed. EnzymeML serves as a seamless communication channel between experimental platforms, electronic lab notebooks, tools for modeling of enzyme kinetics, publication platforms and enzymatic reaction databases. EnzymeML is open and transparent, and invites the community to contribute. All documents and codes are freely available at https://enzymeml.org .

Authors: S. Lauterbach, H. Dienhart, J. Range, S. Malzacher, J. D. Sporing, D. Rother, M. F. Pinto, P. Martins, C. E. Lagerman, A. S. Bommarius, A. V. Host, J. M. Woodley, S. Ngubane, T. Kudanga, F. T. Bergmann, J. M. Rohwer, D. Iglezakis, A. Weidemann, U. Wittig, C. Kettner, N. Swainston, S. Schnell, J. Pleiss

Date Published: 9th Feb 2023

Publication Type: Journal

Abstract (Expand)

SABIO-RK represents a repository for structured, curated, and annotated data on reactions and their kinetics. The data are manually extracted from the scientific literature and stored in a relational database. The content comprises both naturally occurring and alternatively measured biochemical reactions, and the data are made available to the public via a web-based search interface as well as easy-to-use JSON web services for programmatic access. Data are highly interlinked to external databases, ontologies, and controlled vocabularies. This includes cross-references with eg Uniprot, ChEBI, KEGG, BRENDA, Biomodels, and MetaNetX. In the past year we have worked on improving findability of SABIO-RK data as well as interoperability: SABIO-RK was extended to read the additional annotations in the EnzymeML data exchange format to allow the direct import of enzymology data from EnzymeML documents. SABIO-RK is part of the EnzymeML workflow to support the data transfer between experimental platforms, modelling tools and databases (Range et al. FEBS J 2021). In the BMBF-funded project SABIO-VIS we focused on visualizing SABIORK data for the purpose of interactive search and search refinement.

Authors: Andreas Weidemann, Dorotea Dudas, Maja Rey, Ulrike Wittig, Wolfgang Müller

Date Published: 1st Aug 2022

Publication Type: InCollection

Abstract

Not specified

Authors: Sucheta Ghosh, Wolfgang Müller, Ulrike Wittig, Maja Rey

Date Published: 5th May 2022

Publication Type: InProceedings

Abstract (Expand)

In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR’s future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.

Authors: Vitor Martins dos Santos, Mihail Anton, Barbara Szomolay, Marek Ostaszewski, Ilja Arts, Rui Benfeitas, Victoria Dominguez Del Angel, Polonca Ferk, Dirk Fey, Carole Goble, Martin Golebiewski, Kristina Gruden, Katharina F. Heil, Henning Hermjakob, Pascal Kahlem, Maria I. Klapa, Jasper Koehorst, Alexey Kolodkin, Martina Kutmon, Brane Leskošek, Sébastien Moretti, Wolfgang Müller, Marco Pagni, Tadeja Rezen, Miguel Rocha, Damjana Rozman, David Šafránek, Rahuman S. Malik Sheriff, Maria Suarez Diez, Kristel Van Steen, Hans V Westerhoff, Ulrike Wittig, Katherine Wolstencroft, Anze Zupanic, Chris T. Evelo, John M. Hancock

Date Published: 2022

Publication Type: Journal

Powered by
(v.1.12.2)
Copyright © 2008 - 2022 The University of Manchester and HITS gGmbH