Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Abstract The dominant mechanism forming multiple stellar systems in the high-mass regime ( M *  ≳ 8  M ⊙ ) remained unknown because direct imaging of multiple protostellar systems at early phases of ⊙ ) remained unknown because direct imaging of multiple protostellar systems at early phases of high-mass star formation is very challenging. High-mass stars are expected to form in clustered environments containing binaries and higher-order multiplicity systems. So far only a few high-mass protobinary systems, and no definitive higher-order multiples, have been detected. Here we report the discovery of one quintuple, one quadruple, one triple and four binary protostellar systems simultaneously forming in a single high-mass protocluster, G333.23–0.06, using Atacama Large Millimeter/submillimeter Array high-resolution observations. We present a new example of a group of gravitationally bound binary and higher-order multiples during their early formation phases in a protocluster. This provides the clearest direct measurement of the initial configuration of primordial high-order multiple systems, with implications for the in situ multiplicity and its origin. We find that the binary and higher-order multiple systems, and their parent cores, show no obvious sign of disk-like kinematic structure. We conclude that the observed fragmentation into binary and higher-order multiple systems can be explained by core fragmentation, indicating its crucial role in establishing the multiplicity during high-mass star cluster formation.

Authors: Shanghuo Li, Patricio Sanhueza, Henrik Beuther, Huei-Ru Vivien Chen, Rolf Kuiper, Fernando A. Olguin, Ralph E. Pudritz, Ian W. Stephens, Qizhou Zhang, Fumitaka Nakamura, Xing Lu, Rajika L. Kuruwita, Takeshi Sakai, Thomas Henning, Kotomi Taniguchi, Fei Li

Date Published: 15th Jan 2024

Publication Type: Journal

Abstract (Expand)

Context. Observations of young multiple star systems find a bimodal distribution in companion frequency and separation. The origin of these peaks has often been attributed to binary formation via corebeen attributed to binary formation via core and disc fragmentation. However, theory and simulations suggest that young stellar systems that form via core fragmentation undergo significant orbital evolution. Aims. We investigate the influence of the environment on the formation and orbital evolution of multiple star systems, and how core fragmentation contributes to the formation of close (20 − 100 AU) binaries. We use multiple simulations of star formation in giant molecular clouds and compare them to the multiplicity statistics of the Perseus star-forming region. Methods. Simulations were run with the adaptive mesh refinement code RAMSES with sufficient resolution to resolve core fragmentation beyond 400 AU and dynamical evolution down to 16.6 AU, but without the possibility of resolving disc fragmentation. The evolution of the resulting stellar systems was followed over millions of years. Results. We find that star formation in lower gas density environments is more clustered; however, despite this, the fractions of systems that form via dynamical capture and core fragmentation are broadly consistent at ∼40% and ∼60%, respectively. In all gas density environments, we find that the typical scale at which systems form via core fragmentation is 10 3 − 3.5  AU. After formation, we find that systems that form via core fragmentation have slightly lower inspiral rates (∼10 −1.68  AU yr −1 measured over the first 10 000 yr) compared to dynamical capture (∼10 −1.32  AU yr −1 ). We then compared the simulation with the conditions most similar to the Perseus star-forming region to determine whether the observed bimodal distribution can be replicated. We find that it can be replicated, but it is sensitive to the evolutionary state of the simulation. Conclusions. Our results indicate that a significant number of low-mass close binaries with separations from 20 − 100 AU can be produced via core fragmentation or dynamical capture due to efficient inspiral, without the need for a further contribution from disc fragmentation.

Authors: Rajika L. Kuruwita, Troels Haugbølle

Date Published: 1st Jun 2023

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH