Publications

What is a Publication?
7 Publications visible to you, out of a total of 7

Abstract

Not specified

Authors: Jessica Guerra, Mirella Belleri, Giulia Paiardi, Chiara Tobia, Davide Capoferri, Marzia Corli, Elisa Scalvini, Marco Ghirimoldi, Marcello Manfredi, Rebecca C. Wade, Marco Presta, Luca Mignani

Date Published: 1st Dec 2024

Publication Type: Journal

Abstract (Expand)

Although it is well established that the SARS-CoV-2 spike glycoprotein binds to the host cell ACE2 receptor to initiate infection, far less is known about the tissue tropism and host cell susceptibilitysusceptibility to the virus. Differential expression across different cell types of heparan sulfate (HS) proteoglycans, with variably sulfated glycosaminoglycans (GAGs), and their synergistic interactions with host and viral N-glycans may contribute to tissue tropism and host cell susceptibility. Nevertheless, their contribution remains unclear since HS and N-glycans evade experimental characterization. We, therefore, carried out microsecond-long all-atom molecular dynamics simulations, followed by random acceleration molecular dynamics simulations, of the fully glycosylated spike:ACE2 complex with and without highly sulfated GAG chains bound. By considering the model GAGs as surrogates for the highly sulfated HS expressed in lung cells, we identified key cell entry mechanisms of spike SARS-CoV-2. We find that HS promotes structural and energetic stabilization of the active conformation of the spike receptor-binding domain (RBD) and reorientation of ACE2 toward the N-terminal domain in the same spike subunit as the RBD. Spike and ACE2 N-glycans exert synergistic effects, promoting better packing, strengthening the protein:protein interaction, and prolonging the residence time of the complex. ACE2 and HS binding trigger rearrangement of the S2’ functional protease cleavage site through allosteric interdomain communication. These results thus show that HS has a multifaceted role in facilitating SARS-CoV-2 infection, and they provide a mechanistic basis for the development of GAG derivatives with anti-SARS-CoV-2 potential.

Authors: Giulia Paiardi, Matheus Ferraz, Marco Rusnati, Rebecca C. Wade

Date Published: 22nd Oct 2024

Publication Type: Journal

Abstract

Not specified

Authors: Giulia Paiardi, Maria Milanesi, Matheus Ferraz, Liv Zimmermann, Chiara Urbinati, Pasqua Oreste, Francesca Caccuri, Petr Chlanda, Marco Rusnati, Rebecca C. Wade

Date Published: 1st Feb 2024

Publication Type: Journal

Abstract (Expand)

Abstract The COVID‐19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small‐moleculer efficient small‐molecule drugs that are widely available, including in low‐ and middle‐income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the “Billion molecules against COVID‐19 challenge”, to identify small‐molecule inhibitors against SARS‐CoV‐2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding‐, cleavage‐, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS‐CoV‐2 treatments.

Authors: Johannes Schimunek, Philipp Seidl, Katarina Elez, Tim Hempel, Tuan Le, Frank Noé, Simon Olsson, Lluís Raich, Robin Winter, Hatice Gokcan, Filipp Gusev, Evgeny M. Gutkin, Olexandr Isayev, Maria G. Kurnikova, Chamali H. Narangoda, Roman Zubatyuk, Ivan P. Bosko, Konstantin V. Furs, Anna D. Karpenko, Yury V. Kornoushenko, Mikita Shuldau, Artsemi Yushkevich, Mohammed Benabderrahmane, Patrick Bousquet-Melou, Ronan Bureau, Beatrice Charton, Bertrand Cirou, Gérard Gil, William J. Allen, Suman Sirimulla, Stanley Watowich, Nick Antonopoulos, Nikolaos Epitropakis, Agamemnon Krasoulis, Vassilis Pitsikalis, Stavros Theodorakis, Igor Kozlovskii, Anton Maliutin, Alexander Medvedev, Petr Popov, Mark Zaretckii, Hamid Eghbal-zadeh, Christina Halmich, Sepp Hochreiter, Andreas Mayr, Peter Ruch, Michael Widrich, Francois Berenger, Ashutosh Kumar, Yoshihiro Yamanishi, Kam Zhang, Emmanuel Bengio, Yoshua Bengio, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Marcous Gilles, Enrico Glaab, Kelly Barnsley, Suhasini M. Iyengar, Mary Jo Ondrechen, V. Joachim Haupt, Florian Kaiser, Michael Schroeder, Luisa Pugliese, Simone Albani, Christina Athanasiou, Andrea Beccari, Paolo Carloni, Giulia D'Arrigo, Eleonora Gianquinto, Jonas Goßen, Anton Hanke, Benjamin P. Joseph, Daria B. Kokh, Sandra Kovachka, Candida Manelfi, Goutam Mukherjee, Abraham Muñiz-Chicharro, Francesco Musiani, Ariane Nunes-Alves, Giulia Paiardi, Giulia Rossetti, S. Kashif Sadiq, Francesca Spyrakis, Carmine Talarico, Alexandros Tsengenes, Rebecca Wade, Conner Copeland, Jeremiah Gaiser, Daniel R. Olson, Amitava Roy, Vishwesh Venkatraman, Travis J. Wheeler, Haribabu Arthanari, Klara Blaschitz, Marco Cespugli, Vedat Durmaz, Konstantin Fackeldey, Patrick D. Fischer, Christoph Gorgulla, Christian Gruber, Karl Gruber, Michael Hetmann, Jamie E. Kinney, Krishna M. Padmanabha Das, Shreya Pandita, Amit Singh, Georg Steinkellner, Guilhem Tesseyre, Gerhard Wagner, Zi-Fu Wang, Ryan J. Yust, Dmitry S. Druzhilovskiy, Dmitry Filimonov, Pavel V. Pogodin, Vladimir Poroikov, Anastassia V. Rudik, Leonid A. Stolbov, Alexander V. Veselovsky, Maria De Rosa, Giada De Simone, Maria R. Gulotta, Jessica Lombino, Nedra Mekni, Ugo Perricone, Arturo Casini, Amanda Embree, D. Benjamin Gordon, David Lei, Katelin Pratt, Christopher A. Voigt, Kuang-Yu Chen, Yves Jacob, Tim Krischuns, Pierre Lafaye, Agnès Zettor, M. Luis Rodríguez, Kris M. White, Daren Fearon, Frank von Delft, Martin A. Walsh, Dragos Horvath, Charles L. Brooks, Babak Falsafi, Bryan Ford, Adolfo García-Sastre, Sang Yup Lee, Nadia Naffakh, Alexandre Varnek, Guenter Klambauer, Thomas M. Hermans

Date Published: 2024

Publication Type: Journal

Abstract

Not specified

Authors: Serge Perez, Olga Makshakova, Jesus Angulo, Emiliano Bedini, Antonella Bisio, Jose Luis de Paz, Elisa Fadda, Marco Guerrini, Michal Hricovini, Milos Hricovini, Frederique Lisacek, Pedro M. Nieto, Kevin Pagel, Giulia Pairardi, Ralf Richter, Sergey A. Samsonov, Romain A. Vivès, Dragana Nikitovic, Sylvie Ricard Blum

Date Published: 27th Mar 2023

Publication Type: Journal

Abstract (Expand)

Abstract Angiogenesis, the formation of new blood vessels from preexisting ones, is crucial for tumor growth and metastatization, and is considered a promising therapeutic target. Unfortunately, drugs therapeutic target. Unfortunately, drugs directed against a specific proangiogenic growth factor or receptor turned out to be of limited benefit for oncology patients, likely due to the high biochemical redundancy of the neovascularization process. In this scenario, multitarget compounds that are able to simultaneously tackle different proangiogenic pathways are eagerly awaited. UniPR1331 is a 3β-hydroxy-Δ 5 -cholenic acid derivative, which is already known to inhibit Eph–ephrin interaction. Here, we employed an analysis pipeline consisting of molecular modeling and simulation, surface plasmon resonance spectrometry, biochemical assays, and endothelial cell models to demonstrate that UniPR1331 directly interacts with the vascular endothelial growth factor receptor 2 (VEGFR2) too. The binding of UniPR1331 to VEGFR2 prevents its interaction with the natural ligand vascular endothelial growth factor and subsequent autophosphorylation, signal transduction, and in vitro proangiogenic activation of endothelial cells. In vivo, UniPR1331 inhibits tumor cell-driven angiogenesis in zebrafish. Taken together, these data shed light on the pleiotropic pharmacological effect of UniPR1331, and point to Δ 5 -cholenic acid as a promising molecular scaffold for the development of multitarget antiangiogenic compounds.

Authors: Marco Rusnati, Giulia Paiardi, Chiara Tobia, Chiara Urbinati, Alessio Lodola, Pasqualina D’Ursi, Miriam Corrado, Riccardo Castelli, Rebecca C. Wade, Massimiliano Tognolini, Paola Chiodelli

Date Published: 1st Jul 2022

Publication Type: Journal

Abstract

Not specified

Authors: Giulia Paiardi, Stefan Richter, Pasqua Oreste, Chiara Urbinati, Marco Rusnati, Rebecca C. Wade

Date Published: 1st Feb 2022

Publication Type: Journal

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH