Publications

What is a Publication?
4 Publications visible to you, out of a total of 4

Abstract (Expand)

Abstract Background Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortexrtheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer’s disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. Methods Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-β (Aβ) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. Results ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aβ-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αβ toxicity and prevent synapse loss after Aβ treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aβ toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. Conclusions Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer’s disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.

Authors: Despoina Charou, Thanasis Rogdakis, Alessia Latorrata, Maria Valcarcel, Vasileios Papadogiannis, Christina Athanasiou, Alexandros Tsengenes, Maria Anna Papadopoulou, Dimitrios Lypitkas, Matthieu D. Lavigne, Theodora Katsila, Rebecca C. Wade, M. Zameel Cader, Theodora Calogeropoulou, Achille Gravanis, Ioannis Charalampopoulos

Date Published: 1st Dec 2024

Publication Type: Journal

Abstract (Expand)

Abstract The COVID‐19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small‐moleculer efficient small‐molecule drugs that are widely available, including in low‐ and middle‐income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the “Billion molecules against COVID‐19 challenge”, to identify small‐molecule inhibitors against SARS‐CoV‐2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding‐, cleavage‐, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS‐CoV‐2 treatments.

Authors: Johannes Schimunek, Philipp Seidl, Katarina Elez, Tim Hempel, Tuan Le, Frank Noé, Simon Olsson, Lluís Raich, Robin Winter, Hatice Gokcan, Filipp Gusev, Evgeny M. Gutkin, Olexandr Isayev, Maria G. Kurnikova, Chamali H. Narangoda, Roman Zubatyuk, Ivan P. Bosko, Konstantin V. Furs, Anna D. Karpenko, Yury V. Kornoushenko, Mikita Shuldau, Artsemi Yushkevich, Mohammed Benabderrahmane, Patrick Bousquet-Melou, Ronan Bureau, Beatrice Charton, Bertrand Cirou, Gérard Gil, William J. Allen, Suman Sirimulla, Stanley Watowich, Nick Antonopoulos, Nikolaos Epitropakis, Agamemnon Krasoulis, Vassilis Pitsikalis, Stavros Theodorakis, Igor Kozlovskii, Anton Maliutin, Alexander Medvedev, Petr Popov, Mark Zaretckii, Hamid Eghbal-zadeh, Christina Halmich, Sepp Hochreiter, Andreas Mayr, Peter Ruch, Michael Widrich, Francois Berenger, Ashutosh Kumar, Yoshihiro Yamanishi, Kam Zhang, Emmanuel Bengio, Yoshua Bengio, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Marcous Gilles, Enrico Glaab, Kelly Barnsley, Suhasini M. Iyengar, Mary Jo Ondrechen, V. Joachim Haupt, Florian Kaiser, Michael Schroeder, Luisa Pugliese, Simone Albani, Christina Athanasiou, Andrea Beccari, Paolo Carloni, Giulia D'Arrigo, Eleonora Gianquinto, Jonas Goßen, Anton Hanke, Benjamin P. Joseph, Daria B. Kokh, Sandra Kovachka, Candida Manelfi, Goutam Mukherjee, Abraham Muñiz-Chicharro, Francesco Musiani, Ariane Nunes-Alves, Giulia Paiardi, Giulia Rossetti, S. Kashif Sadiq, Francesca Spyrakis, Carmine Talarico, Alexandros Tsengenes, Rebecca Wade, Conner Copeland, Jeremiah Gaiser, Daniel R. Olson, Amitava Roy, Vishwesh Venkatraman, Travis J. Wheeler, Haribabu Arthanari, Klara Blaschitz, Marco Cespugli, Vedat Durmaz, Konstantin Fackeldey, Patrick D. Fischer, Christoph Gorgulla, Christian Gruber, Karl Gruber, Michael Hetmann, Jamie E. Kinney, Krishna M. Padmanabha Das, Shreya Pandita, Amit Singh, Georg Steinkellner, Guilhem Tesseyre, Gerhard Wagner, Zi-Fu Wang, Ryan J. Yust, Dmitry S. Druzhilovskiy, Dmitry Filimonov, Pavel V. Pogodin, Vladimir Poroikov, Anastassia V. Rudik, Leonid A. Stolbov, Alexander V. Veselovsky, Maria De Rosa, Giada De Simone, Maria R. Gulotta, Jessica Lombino, Nedra Mekni, Ugo Perricone, Arturo Casini, Amanda Embree, D. Benjamin Gordon, David Lei, Katelin Pratt, Christopher A. Voigt, Kuang-Yu Chen, Yves Jacob, Tim Krischuns, Pierre Lafaye, Agnès Zettor, M. Luis Rodríguez, Kris M. White, Daren Fearon, Frank von Delft, Martin A. Walsh, Dragos Horvath, Charles L. Brooks, Babak Falsafi, Bryan Ford, Adolfo García-Sastre, Sang Yup Lee, Nadia Naffakh, Alexandre Varnek, Guenter Klambauer, Thomas M. Hermans

Date Published: 2024

Publication Type: Journal

Abstract

Not specified

Authors: Ainara Claveras Cabezudo, Christina Athanasiou, Alexandros Tsengenes, Rebecca C. Wade

Date Published: 11th Apr 2023

Publication Type: Journal

Abstract (Expand)

Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity,high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer’s Disease (AD) progression. However, its low bioavailability and its blood–brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-β actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid β-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer’s Disease, selectively targeting TrkA-mediated pro-survival signals.

Authors: Thanasis Rogdakis, Despoina Charou, Alessia Latorrata, Eleni Papadimitriou, Alexandros Tsengenes, Christina Athanasiou, Marianna Papadopoulou, Constantina Chalikiopoulou, Theodora Katsila, Isbaal Ramos, Kyriakos C. Prousis, Rebecca C. Wade, Kyriaki Sidiropoulou, Theodora Calogeropoulou, Achille Gravanis, Ioannis Charalampopoulos

Date Published: 1st Mar 2022

Publication Type: Journal

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH